

Bulletin #1187S GT-Series Geared Traction Machine Manual Supplement REV A; 12/11/2024

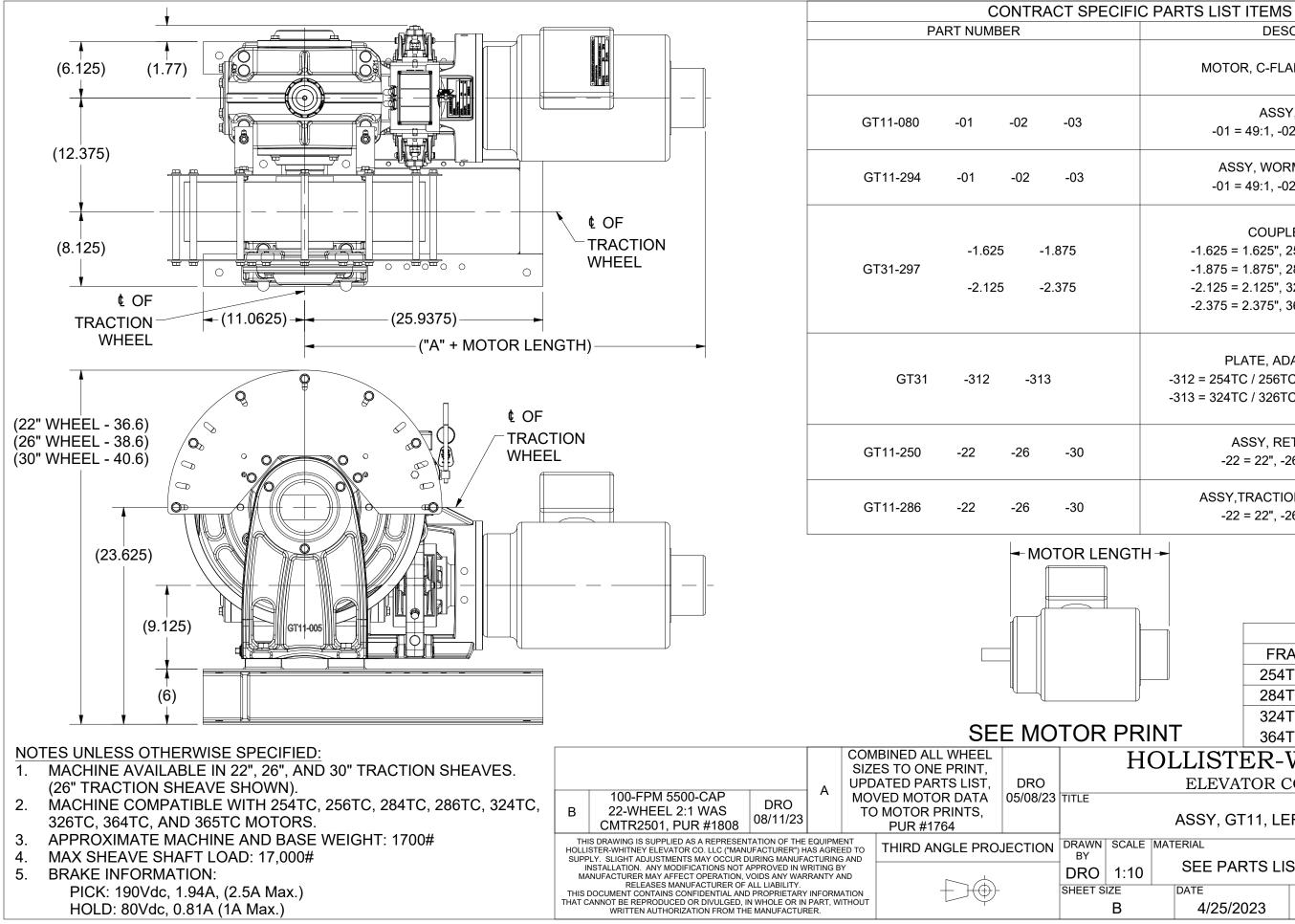
#1 Hollister-Whitney Parkway, Quincy, IL 62305 🥖 Phone: 217.222.0466 🥇 www.hollisterwhitney.com

Bulletin #1187S GT-Series Geared Traction Machine Manual Supplement

© Hollister-Whitney Elevator Co. LLC #1Hollister-Whitney Parkway

Table of Contents

•	<u>GT SERIES DATA TAG INFO</u>	5
•	MACHINES - OVERHEAD	6
	• GT11	6
	• GT31	15
•	MACHINES - BASEMENT	23
	o GT11BS	23
	• GT31BS	33
	 GT BASEMENT SERIES TEMPLATES 	42
•	MACHINES – OVERHEAD DEFLECTOR	44
	• GT11OD	44
	• GT310D	54
	 GT OD SERIES TEMPLATES 	61
•	MACHINE BRAKE INFO	63
•	MACHINE GUARDING	64
	• GT11 ROPE RETAINER	64
	• GT31 ROPE RETAINER	65
	 GT11 BASEMENT SERIES ROPE RETAINER 	67
	 GT31 BASEMENT SERIES ROPE RETAINER 	68
	 GT11 OD SERIES ROPE RETAINER 	70
	 GT31 OD SERIES ROPE RETAINER 	71
	 GT11 TRACTION SHEAVE GUARD 	73
	 GT31 TRACTION SHEAVE GUARD 	75
•	MACHINE ISOLATION ASSEMBLY	77
•	MACHINE BLOCK-UP ASSEMBLY	79
•	ROPE GRIPPER MOUNTING GUIDE	81
•	GT SERIES REPLACEMENT KITS AND INFO	85
	 GT11 OVERHEAD KITS AND INFO 	85
	 GT11 BASEMENT/OD KITS AND INFO 	90
	 GT31 OVERHEAD KITS AND INFO 	94
	 GT31 BASEMENT/OD KITS AND INFO 	100
•	<u>ENCODER INFO</u>	104
•	ABB MOTOR MANUAL	108
•	WEG MOTOR MANUAL	112
•	MOTOR INFO	178
	• CMTR1001	188
	• CMTR1505	191
	• CMTR2001	194
	• CMTR2501	196

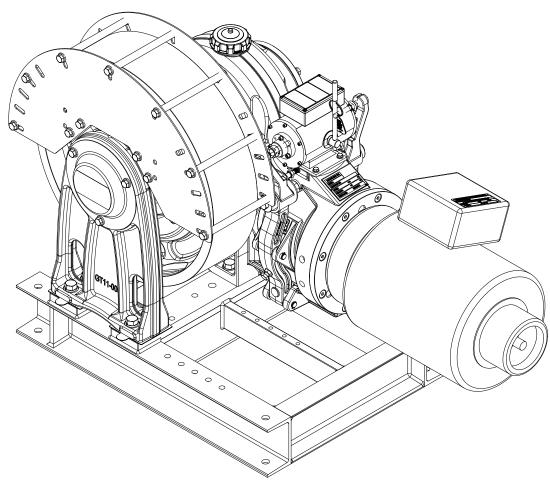

	• CMTR3001	199
	• CMTR3005	201
	• CMTR4005	204
	• CMTR5001	207
	• CMTR5005	209
	• CMTR6005	212
•	CSA CERTIFICATION	215
	• GT31-314 Elevator Brake Solenoid	215
	 GT31-314-11 Elevator Brake Solenoid (Low Voltage) 	217

DATA TAGS

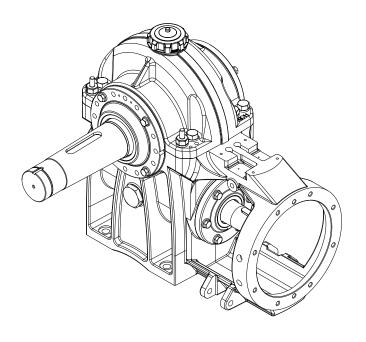
Below is some general information on the motor tags and what they represent.

- Hollister-Whitney Contract Data Tag:
 - These are the estimated values the machine will run at. These values are typically less than the motor manufacturer's data plate values. This information is mainly used for drive sizing.
- Motor Manufacturer Data Tag:
 - The data on the motor manufacturer's nameplate represents the actual motor characteristics. These are typically higher than what is needed for the installation. This information is typically used for drive setup so the drive can model the correct motor.

Page 6

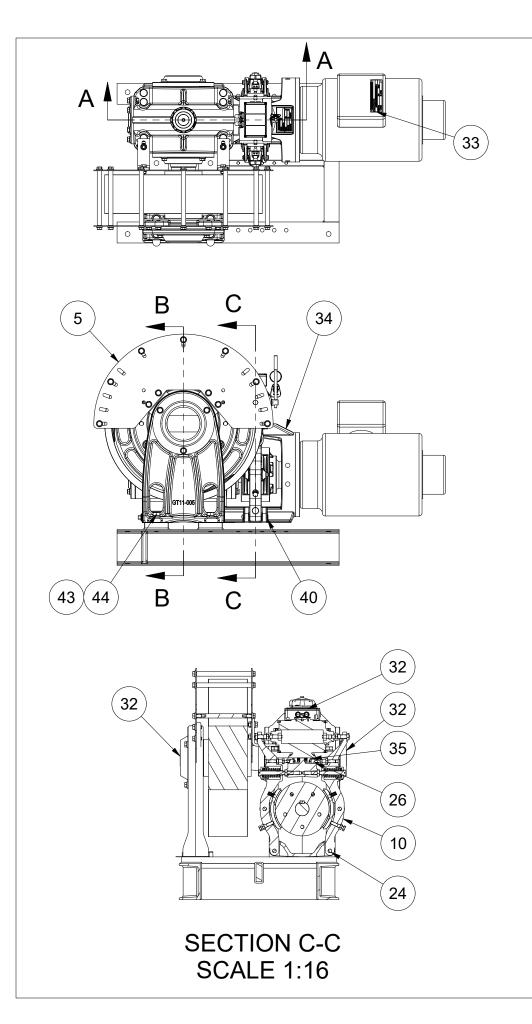

	01 -		∕, CENT		0.3				
	-01 -	49:1, -02	2 – 49.2	, -03 – 4	9.5				
	ASS	Y, WOR	M AND	BEARIN	G				
	-01 =	49:1, -02	2 = 49:2	, -03 = 4	9:3				
	1 625 -		.ER, MC						
		1.625", 254TC / 256TC FRAME 1.875", 284TC / 286TC FRAME							
	-2.125 =								
	-2.375 =	2.375", 3	864TC /	365TC F	RAME				
	PL	ATE, AD	APTER	мотор	र				
	-312 = 254T0				-				
	-313 = 324T0	C / 326T(C / 364T	C / 3651	IC FRAME				
	A	SSY, RE	TAINER						
		= 22", -26 = 26", -30 = 30"							
	ASSY,T	RACTIC	N WHE	EL AND	HUB				
		= 22", -2							
ENGT	Ή-►								
				IMENS					
			AME S		INCHES				
			FC / 25		18.895				
	I		FC / 28		19.135				
	RINT		FC / 32 FC / 36		20.625				
	IOLLIST				v v				
1.	ELEVA								
			<u>, , , , , , , , , , , , , , , , , , , </u>	<u> </u>					
	ASSY, GT	⁻ 11, LE	FT HA	ND					
SCAL		RTS LIS	ST	REFERENCE TOL ALL DIMENSIONS REFERENCE UNLESS OTHERWISE					
SIZE	DATE			GT11-LH					
В	4/25/20	023			SHEET 1 OF 9				
					Page				

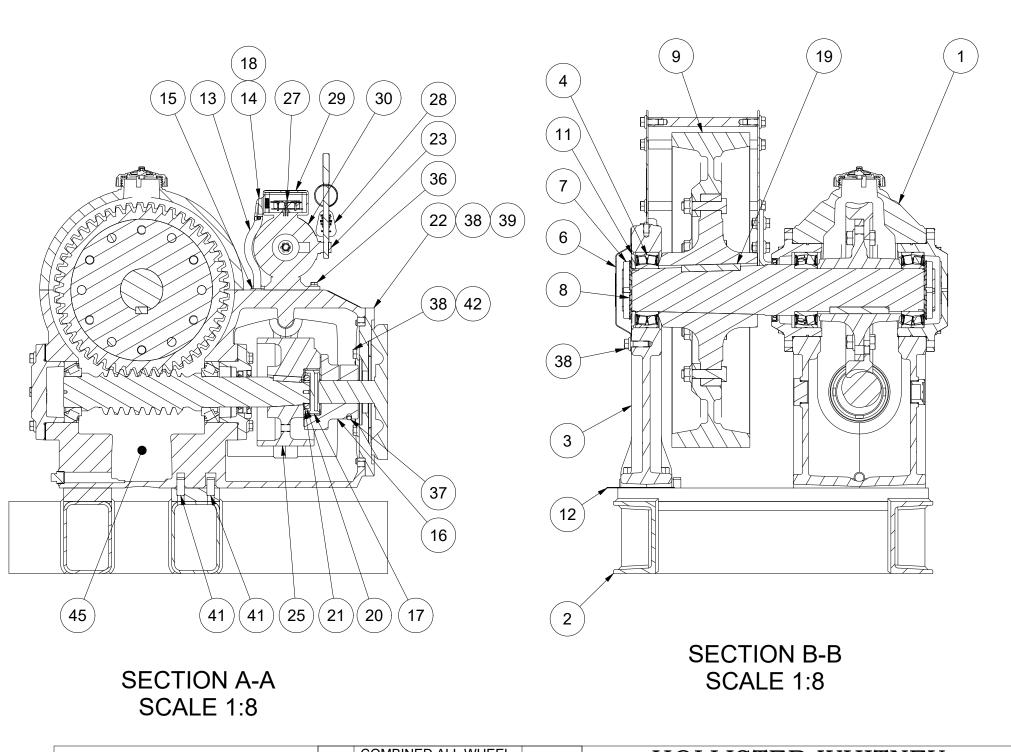
DESCRIPTION

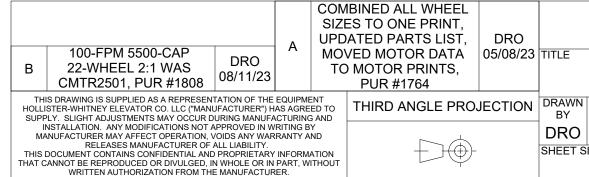

MOTOR, C-FLANGE - REFERENCE

ITEM	QTY	PART NUMBER	ERING MASTER PARTS LIST DESCRIPTION
1	1	GT11-273-01	ASSY, GEAR BOX, SINGLE LEAD, 49:1
I	1	GT11-273-02	ASSY, GEAR BOX, DOUBLE LEAD, 49:2
		GT11-273-03	ASSY, GEAR BOX, TRIPLE LEAD, 49:3
2	1	GT11-001	
	1		ASSY, BASE, FINISHED
3	1	GT11-005	STAND, OUTBOARD
4	1	GT11-093	BEARING, ROLLER, SPHERICAL
5	1	GT11-250-22	ASSY, RETAINER, ROPE, 22"
		GT11-250-26	ASSY, RETAINER, ROPE, 26"
		GT11-250-30	ASSY, RETAINER, ROPE, 30"
6	1	GT11-281	COVER, STAND, OUTBOARD
7	1	GT11-282	NUT, LOCK, SHAFT
8	1	GT11-283	WASHER, LOCK, SHAFT
9	1	GT11-286-22	ASSY, TRACTION WHEEL AND HUB, 22"
		GT11-286-26	ASSY, TRACTION WHEEL AND HUB, 26"
		GT11-286-30	ASSY, TRACTION WHEEL AND HUB, 30"
10	2	GT11-315	ASSY, ARM, BRAKE
11	1	GT11-326	PLATE, RETENTION, BEARING, STAND
12	AS REQ'D	GT31-062-05	SHIM, STAND, OUTBOARD, 0.0050" THK
		GT31-062-10	SHIM, STAND, OUTBOARD, 0.0100" THK
		GT31-062-31	SHIM, STAND, OUTBOARD, 0.0310" THK
13	2	GT31-290	CONDUIT, METAL, FLEXIBLE, 3/8"
10	2	GT31-291	ADAPTER, FMC, 90 DEG ELBOW, 3/8"
15	2	GT31-293	ADAPTER, STRAIGHT, FMC, 3/8"
16	1	GT31-297-1.625	
10	I		COUPLER, MOTOR, 1.625", 254TC / 256TC FRAME
		GT31-297-1.875	COUPLER, MOTOR, 1.875", 284TC / 286TC FRAME
		GT31-297-2.125	COUPLER, MOTOR, 2.125", 324TC / 326TC FRAME
		GT31-297-2.375	COUPLER, MOTOR, 2.125", 364TC / 365TC FRAME
17	1	GT31-298	ELEMENT, COUPLING
18	2	GT31-299	BUSHING, ANTI-SHORT, FEMALE, FMC, 3/8"
19	1	GT11-300	KEY, SHAFT, WHEEL
20	1	GT31-310	NUT, LOCK, SHAFT
21	1	GT31-311	WASHER, LOCK, SHAFT
22	1	GT31-312	PLATE, ADAPTER, MOTOR, 254TC / 256TC / 284TC / 286TC FRAME
		GT31-313	PLATE, ADAPTER, MOTOR, 324TC / 326TC / 364TC / 365TC FRAME
23	1	GT31-314	ASSY, SOLENOID, BRAKE
24	2	GT31-321	PIN, PIVOT
25	1	GT31-322	DRUM, BRAKE
26	2	GT31-327	ASSY, SWITCH, BRAKE
27	1	GT31-358	ASSY, BLOCK, TERMINAL
28	1	P-208	MANUAL BRAKE RELEASE TAG
20	1	P-226	LABEL, DATA, ELECTRICAL, BRAKE
30	1	P-220 P-227	LABEL, INSTRUCTION, BRAKE
31		P-228	
32	2	P-230	NAMEPLATE, SMALL, HOLLISTER-WHITNEY
33	1	P-231	TAG, DATA, MOTOR, CONTRACT
34	1	P-236	MACHINE DATA TAG
35	4	#6 - 32 UNC x 7/8"	SCREW, HEX HEAD
36	4	5/16" - 18 UNC x 3/4"	BOLT, HEX, SERRATED FLANGE, GRADE 5, ZINC-PLATED
37	1	7/16" - 14 UNC x 2-1/4"	SCREW, HEX, CAP, SOCKET HEAD, BLACK OXIDE FINISH
38	AS REQ'D	1/2" - 13 UNC x 1-1/2"	BOLT, HEX, SERRATED FLANGE, GRADE 5, ZINC-PLATED
39	AS REQ'D	1/2" - 13 UNC x 1-1/2"	SCREW, HEX, CAP, FLAT SOCKET HEAD, BLACK OXIDE FINISH
40	4	5/8" - MS 16624	RING, RETAINING, EXTERNAL, SERIES 3100
41	4	5/8" x 1-1/2"	PIN, DOWEL, GROUND, HARDENED
42	AS REQ'D	5/8" - 11 UNC x 1-1/2"	BOLT, HEX, SERRATED FLANGE, GRADE 5, ZINC-PLATED
43	8	3/4"	LOCK WASHER, HELICAL SPRING, REGULAR
44	8	3/4" - 10 UNC x 2-1/2"	HEX CAP SCREW, GRADE 5, BLACK OXIDE FINISH
45	1.75 gal	MOBIL SHC 636	OIL, GEAR, HIGH PRESSURE

				GT11-273 PART	TS LIST
ITEM	QTY	QTY	QTY	PART NUMBER	DESCRIPTION
	GT11-273-01	GT11-273-02	GT11-273-03		
2.1	1	0	0	GT11-080-01	ASSY, CENTER, SINGLE LEAD
2.1	0	1	0	GT11-080-02	ASSY, CENTER, DOUBLE LEAD
2.1	0	0	1	GT11-080-03	ASSY, CENTER, TRIPLE LEAD
2.2	1	1	1	GT11-284	ASSY, UPPER AND LOWER HOUSING, MACHINED
2.3	1	0	0	GT11-294-01	ASSY, WORM SHAFT AND BEARING, 7/8" SINGLE
2.3	0	1	0	GT11-294-02	ASSY, WORM SHAFT AND BEARING, 7/8" DOUBLE
2.3	0	0	1	GT11-294-03	ASSY, WORM SHAFT AND BEARING, 7/8" TRIPLE
2.4	2	2	2	GT11-367	BOLT, HOUSING, GUARD MOUNTING
2.5	1	1	1	GT31-063	CAP, FILL, OIL
2.6	1	1	1	GT31-085	CAP, BEARING, REAR END
2.7	1	1	1	GT31-085-FE	CAP, BEARING, FORWARD END
2.8	AS REQ'D	AS REQ'D	AS REQ'D	GT31-087	SHIM, CAP, BEARING
2.9	1	1	1	GT31-276	GLASS, SIGHT, OIL
2.10	1	1	1	GT31-277	PLUG, DRAIN, OIL
2.11	1	1	1	GT31-278	PLUG, OIL
2.12	1	1	1	GT31-279	O-RING, PLUG, OIL
2.13	1	1	1	GT31-287	SEAL, SHAFT, RADIAL
2.14	1	1	1	GT31-287-1	SEAL, SHAFT, RADIAL
2.15	4	4	4	GT31-295	SHIM, ECCENTRIC, EDGE BONDED
2.16	1	1	1	GT31-301	KEY, SHAFT, WORM
2.17	20	20	20	1/2"-13 UNC X 1.5"	BOLT, HEX, SERRATED FLANGE, GRADE 5, ZINC-PLATED

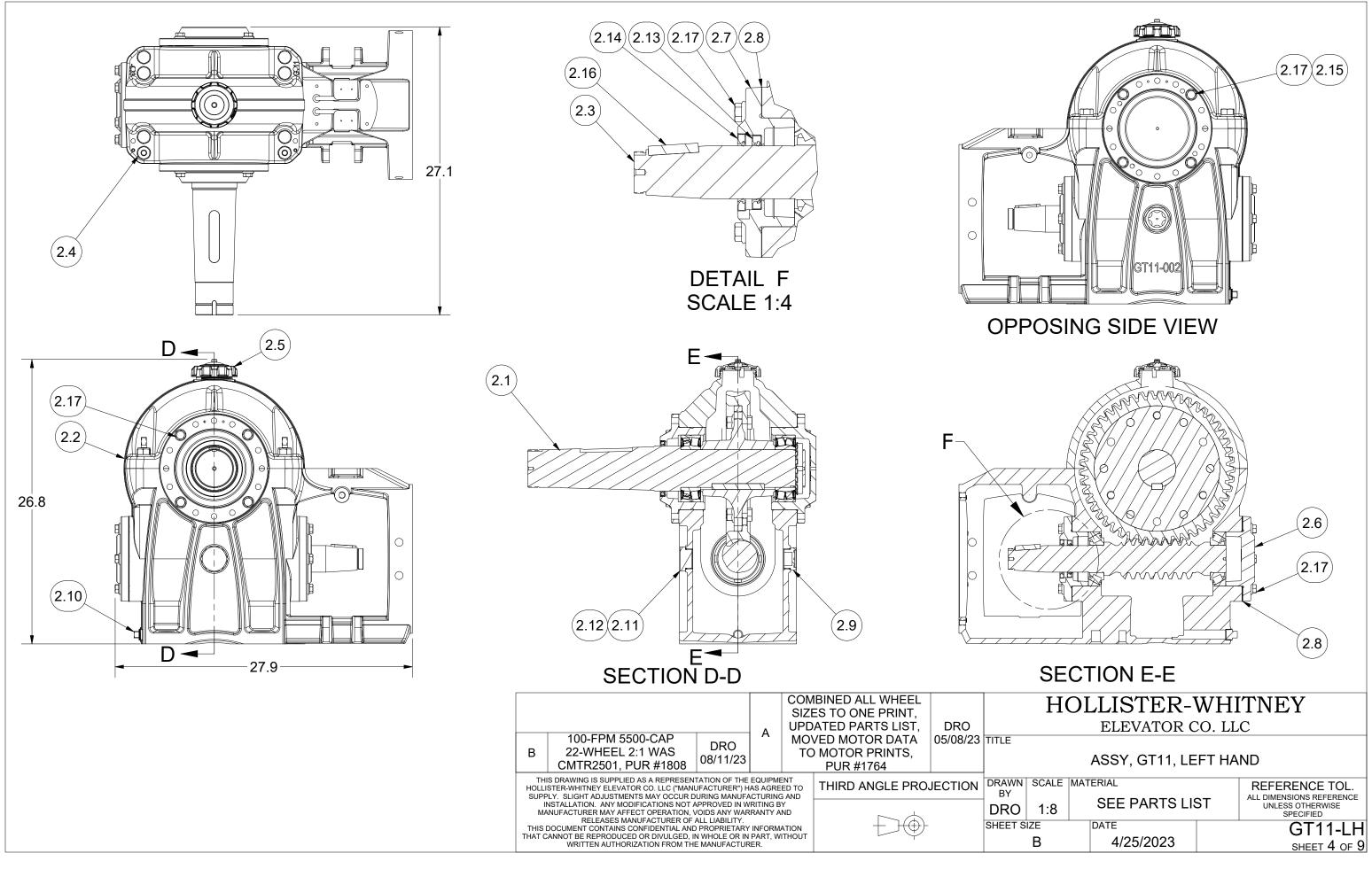





GT11-273 SCALE 1:10

GT11-LH SCALE 1:10

				IBINED ALL WHEEL ES TO ONE PRINT,			H	OLLISTER-	WH	ITNEY
		۸	UPD	ATED PARTS LIST,	DRO			ELEVATOR	CO. LL	C I
FPM 5500-CAP VHEEL 2:1 WAS 2501, PUR #1808	A	1	VED MOTOR DATA D MOTOR PRINTS, PUR #1764	05/08/23	TITLE		ASSY, GT11, L	EFT HA	ND	
IS SUPPLIED AS A REPRESEN NEY ELEVATOR CO. LLC ("MAN ADJUSTMENTS MAY OCCUR D	UFACTURER") H	AS AGRE	ED TO	THIRD ANGLE PRO	JECTION	DRAWN BY	SCALE	MATERIAL		REFERENCE TOL.
N. ANY MODIFICATIONS NOT A ER MAY AFFECT OPERATION, V ELEASES MANUFACTURER OF	VOIDS ANY WAR					DRO	1:10	SEE PARTS L	IST	UNLESS OTHERWISE SPECIFIED
CONTAINS CONFIDENTIAL ANE REPRODUCED OR DIVULGED, I	D PROPRIETARY					SHEET S		DATE		GT11-LH
EN AUTHORIZATION FROM TH							С	4/25/2023		SHEET 2 OF 9

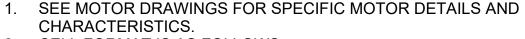


ASSY, GT11, LEFT HAND

	SCALE	MATERIAL	REFERENCE TOL.	
	1:16	SEE PARTS LIS	ST ALL DIMENSIONS REFERENCE UNLESS OTHERWISE SPECIFIED	ST
5	IZE	DATE	GT11-LH	
	В	4/25/2023	SHEET 3 OF 9	

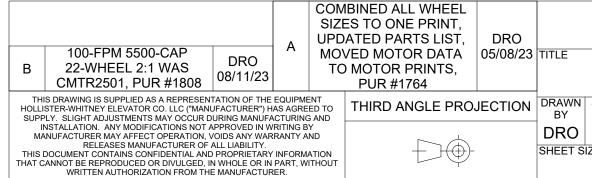
SPEED	(ft/min)	50	75	100	125	150	175	200	250	300	350	400	450	500
CAP (lbs)	SHEAVE SIZE (in)													
		49:1	49:1	49:1	49:1	49:1	49:1	49:2	49:2	49:2	49:2	49:3	49:3	49:3
1000	22	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1505	CMTR1505	CMTR1001	CMTR2001	CMTR3005	CMTR3005	CMTR2001	CMTR3005	CMTR3
		N/A	N/A	IG1MTR1030	IG1MTR1031	IG1MTR1514	N/A	IG1MTR1030	IG1MTR1031	IG1MTR1514	IG1MTR3515	IG3MTR2013	IG3MTR3014	IG1MTF
		49:1	49:1	49:1	49:1	49:1	49:1	49:2	49:2	49:2	49:2	49:3	49:3	49:3
1000	26	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR2501	CMTR2501	CMTR
		N/A	N/A	IG1MTR1729	IG1MTR1030	IG1MTR1031	N/A	IG1MTR1729	IG1MTR1030	IG3MTR2013	IG1MTR1514	IG1MTR2504	IG3MTR2013	IG3MTF
		49:1	49:1	49:1	49:1	49:1	49:1	49:1	49:2	49:2	49:2	49:2	49:2	49:
1000	30	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR3005	CMTR
		N/A	N/A	IG1MTR1729	IG1MTR1030	IG1MTR1031	N/A	IG1MTR1514	IG1MTR1030	IG1MTR2504	IG3MTR2013	IG3MTR3014	IG1MTR3515	IG1MTF
		49:1	49:1	49:1	49:1	49:1	49:1	49:2	49:2	49:2	49:2	49:3	49:3	49:
1500	22	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1505	CMTR1505	CMTR2001	CMTR2001	CMTR3005	CMTR3005	CMTR2501	CMTR4005	CMTR
		N/A	N/A	IG1MTR1030	IG1MTR1031	IG1MTR1514	N/A	IG1MTR1030	IG3MTR2013	IG1MTR1514	IG1MTR3515	IG3MTR3013	IG3MTR3014	IG1MT
		49:1	49:1	49:1	49:1	49:1	49:1	49:2	49:2	49:2	49:2	49:3	49:3	49:
1500	26	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR3001	CMTR3001	CMTR
		N/A	N/A	IG1MTR1729	IG1MTR1030	IG1MTR1031	N/A	IG1MTR1729	IG3MTR2030	IG3MTR2013	IG3MTR3014	IG1MTR2504	IG3MTR3013	IG3MTF
		49:1	49:1	49:1	49:1	49:1	49:1	49:1	49:2	49:2	49:2	49:2	49:2	49:
1500	30	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR2001	CMTR4005	CMTR4005	CMTR
		N/A	N/A	IG1MTR1729	IG1MTR1030	IG1MTR1031	N/A	IG1MTR1514	IG3MTR2030	IG1MTR2504	IG3MTR2013	IG3MTR3014	IG1MTR3515	IG1MTF
		49:1	49:1	49:1	49:1	49:1	49:1	49:2	49:2	49:2	49:2	49:3	49:3	49:
2000	22	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1505	CMTR1505	CMTR2001	CMTR2001	CMTR3005	CMTR3005	CMTR3001	CMTR4005	CMTR
		N/A	N/A	IG1MTR1030	IG1MTR1031	IG1MTR1514	N/A	IG3MTR2030	IG3MTR2013	IG3MTR3014	IG1MTR3515	IG3MTR3013	IG3MTR3014	IG1MT
		49:1	49:1	49:1	49:1	49:1	49:1	49:2	49:2	49:2	49:2	49:3	49:3	49:
2000	26	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR2001	CMTR3005	CMTR2001	CMTR2501	CMTR2501	CMTR4005	CMTR5001	CMTR5001	CMTR
		N/A	N/A	IG1MTR1729	IG1MTR1030	IG1MTR1031	N/A	IG1MTR1729	IG3MTR2030	IG3MTR2013	IG3MTR3014	IG1MTR2504	IG3MTR3013	IG3MTF
		49:1	49:1	49:1	49:1	49:1	49:1	49:1	49:2	49:2	49:2	49:2	49:2	49:
2000	30	CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR2501	CMTR2501	CMTR2501	CMTR4005	CMTR4005	CMTR
		N/A	N/A	IG1MTR1729	IG1MTR1030	IG1MTR1031	N/A	IG1MTR1514	IG3MTR2030	IG1MTR2504	IG3MTR3013	IG3MTR3014	IG1MTR3515	IG1MT
		49:1	49:1	49:1	49:1	49:1	49:1	49:2	49:2	49:2	49:2			
2500	22	CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR3005	CMTR2001	CMTR2501	CMTR4005	CMTR4005	GT31	GT31	GT
		N/A	N/A	IG1MTR1030	IG1MTR1031	IG1MTR1514	N/A	IG3MTR2030	IG3MTR2013	IG3MTR3014	IG1MTR3515			
		49:1	49:1	49:1	49:1	49:1	49:1	49:2	49:2	49:2	49:2			
2500	26	CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR2501	CMTR2501	CMTR2501	CMTR4005	GT31	GT31	GT
		N/A	N/A	IG1MTR1729	IG1MTR1030	IG3MTR2013	N/A	IG1MTR1729	IG3MTR2030	IG3MTR3013	IG3MTR3014			
		49:1	49:1	49:1	49:1	49:1	49:1	49:1	49:2	49:2	49:2			
2500	30	CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR3001	CMTR3001	CMTR3001	GT31	GT31	GT
		N/A	N/A	IG1MTR1729	IG1MTR1030	IG1MTR2504	N/A	IG3MTR3014	IG3MTR2030	IG1MTR2504	IG3MTR3013			

1. SEE MOTOR DRAWINGS FOR SPECIFIC MOTOR DETAILS AND CHARACTERISTICS.


2. CELL FORMAT IS AS FOLLOWS:

GEAR RATIO ABB OR WEG MOTOR 49:X 🗡 PART NUMBER IMPERIAL MOTOR **▲**CMTRXXXX PART NUMBER IGXMTRXXXX 🗡

			А	SIZI UPD	IBINED ALL WHEEL ES TO ONE PRINT, ATED PARTS LIST,	DRO		H	OLLISTER-V ELEVATOR C		
В	100-FPM 5500-CAP 22-WHEEL 2:1 WAS CMTR2501, PUR #1808	DRO 08/11/23			VED MOTOR DATA MOTOR PRINTS, PUR #1764	05/08/23	TITLE		ASSY, GT11, LE	FT HA	ND
HOLLI SUPF II	S DRAWING IS SUPPLIED AS A REPRESEN STER-WHITNEY ELEVATOR CO. LLC ("MANU LY. SLIGHT ADJUSTMENTS MAY OCCUR D ISTALLATION. ANY MODIFICATIONS NOT A NUFACTURER MAY AFFECT OPERATION, I	UFACTURER") H URING MANUFA APPROVED IN W /OIDS ANY WAR	AS AGRE	ED TO S AND Y		JECTION	DRAWN BY DRO	SCALE	MATERIAL SEE PARTS LIS	ST	REFERENCE TOL. ALL DIMENSIONS REFERENCE UNLESS OTHERWISE SPECIFIED
	RELEASES MANUFACTURER OF DOCUMENT CONTAINS CONFIDENTIAL AND ANNOT BE REPRODUCED OR DIVULGED, II WRITTEN AUTHORIZATION FROM THI) PROPRIETARY N WHOLE OR IN	PART, WI				SHEET S	IZE B	DATE 4/25/2023		GT11-LH SHEET 5 OF 9

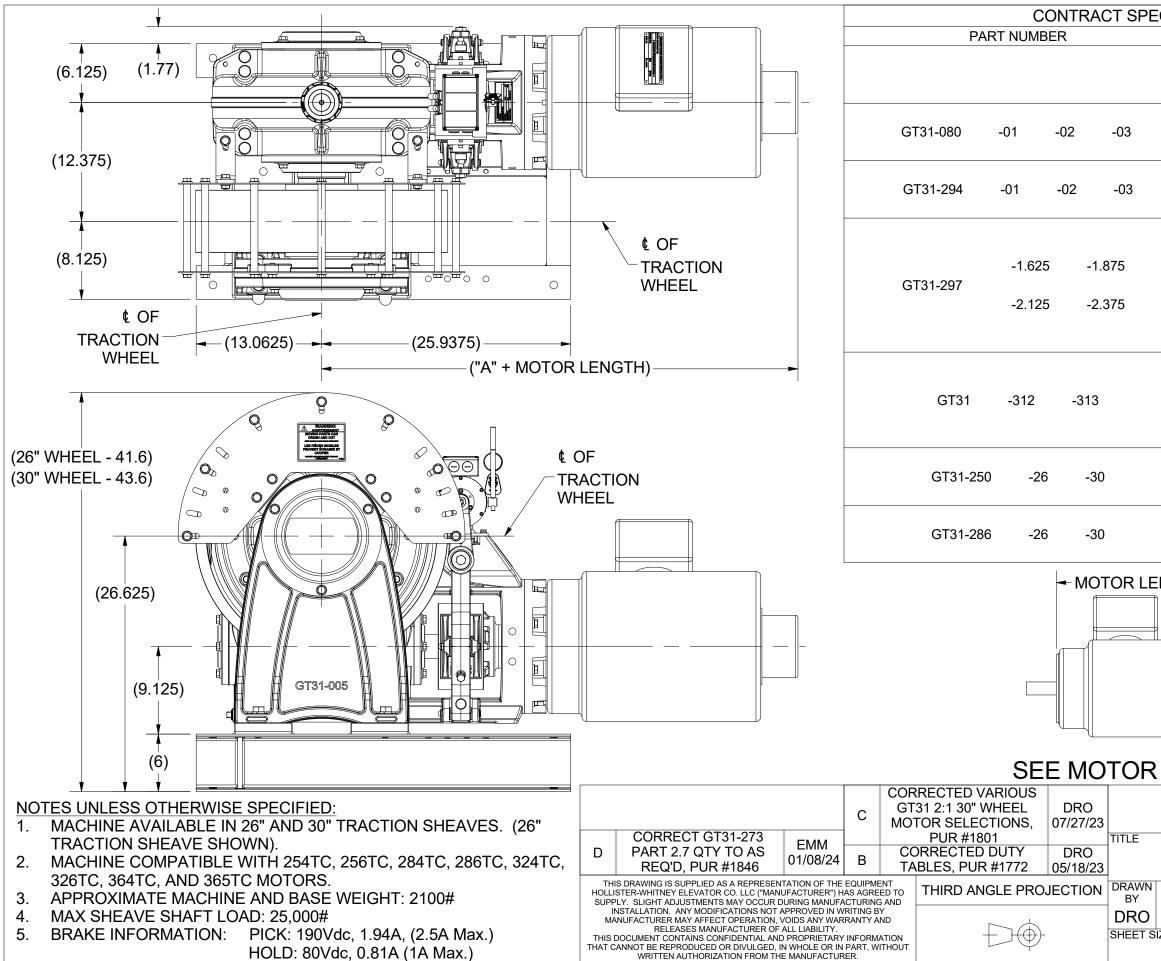

MOTOR CHART 1:1 ROPING														
SPEED	(ft/min)	50	75	100	125	150	175	200	250	300	350	400	450	500
CAP (lbs)	SHEAVE SIZE (in)													
		49:1	49:1	49:1	49:1	49:1	49:1	49:2						
3000	22	CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR3005	CMTR2501	GT31	GT31	GT31	GT31	GT31	GT31
		N/A	N/A	IG1MTR1030	IG3MTR2013	IG1MTR1514	N/A	IG3MTR2030						
		49:1	49:1	49:1	49:1	49:1	49:1	49:2						
3000	26	CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR3001	GT31	GT31	GT31	GT31	GT31	GT31
		N/A	N/A	IG1MTR1729	IG3MTR2030	IG3MTR2013	N/A	IG1MTR1729						
		49:1	49:1	49:1	49:1	49:1	49:1	49:1						
3000	30	CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR3005	GT31	GT31	GT31	GT31	GT31	GT31
		N/A	N/A	IG1MTR1729	IG3MTR2030	IG1MTR2504	N/A	IG3MTR3014						

2. CELL FORMAT IS AS FOLLOWS:

ABB OR WEG MOTOR PART NUMBER GEAR RATIO 49:X GEAR RATIO IMPERIAL MOTOR PART NUMBER IGXMTRXXXX

HOLLISTER-WHITNEY ELEVATOR CO. LLC

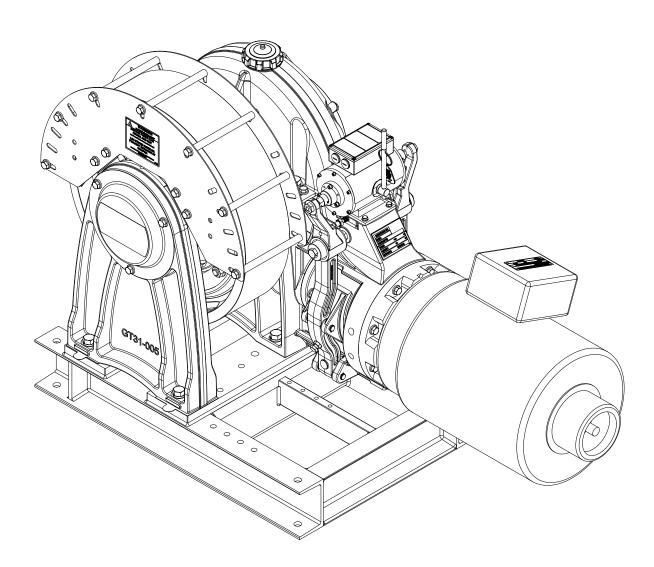
ASSY, GT11, LEFT HAND

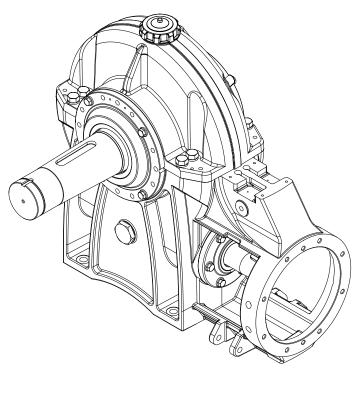

	SCALE	MATERIAL		REFERENCE TOL.
		SEE PARTS LIS	ST	ALL DIMENSIONS REFERENCE UNLESS OTHERWISE SPECIFIED
5	IZE	DATE		GT11-LH
	В	4/25/2023		SHEET 6 OF 9

00550	(ft/min)	F 0	75	400	405	450	1	R CHART 2:1	1	050	075	000	005	050	075	400
SPEED	(ft/min) SHEAVE	50	75	100	125	150	175	200	225	250	275	300	325	350	375	400
CAP (lbs)	SIZE (in)															
		49:1	49:1	49:2	49:2	49:2	49:2	49:3	49:3	49:3						
1000	22	CMTR1001	CMTR1505	CMTR1001	CMTR1001	CMTR1505	CMTR1505	CMTR1001	CMTR1505	CMTR1505	N/A	N/A	N/A	N/A	N/A	N/A
		IG1MTR1030	N/A	IG1MTR1030		IG1MTR1514	N/A	IG1MTR1514	N/A	IG1MTR3515						
		49:1	49:1	49:2	49:2	49:2	49:2	49:3	49:3	49:3						
1000	26	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1505	CMTR1001	CMTR1001	CMTR1001	N/A	N/A	N/A	N/A	N/A	N/A
		IG1MTR1729	N/A	IG1MTR1729		IG1MTR1031	N/A	IG1MTR1031	N/A	IG1MTR1514						
		49:1	49:1	49:1	49:2	49:2	49:2	49:2	49:2	49:2	49:3	49:3	49:3	49:3	49:3	49:3
1000	30	CMTR1001	CMTR1001	CMTR1505	CMTR1001	CMTR1001	CMTR1001	CMTR1505	CMTR1505	CMTR1505	CMTR2001	CMTR3005	CMTR3005	CMTR3005	CMTR3005	CMTR3005
		IG1MTR1729	N/A	IG1MTR1514	IG1MTR1030		N/A	IG1MTR1514	N/A	IG1MTR3515	N/A	IG1MTR1514	N/A	IG1MTR3515	N/A	IG1MTR35
		49:1	49:1	49:2	49:2	49:2	49:2	49:3	49:3	49:3						
1500	22	CMTR1001	CMTR1505	CMTR1001	CMTR1001	CMTR1505	CMTR1505	CMTR1001	CMTR3005	CMTR3005	N/A	N/A	N/A	N/A	N/A	N/A
		IG1MTR1030	N/A	IG1MTR1030		IG1MTR1514	N/A	IG1MTR1514	N/A	IG1MTR3515						
		49:1	49:1	49:2	49:2	49:2	49:2	49:3	49:3	49:3						
1500	26	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR2001	N/A	N/A	N/A	N/A	N/A	N/A
		IG1MTR1729	N/A	IG1MTR1729		IG1MTR1031	N/A	IG1MTR1031	N/A	IG3MTR2013						
		49:1	49:1	49:1	49:2	49:2	49:2	49:2	49:2	49:2	49:3	49:3	49:3	49:3	49:3	49:3
1500	30	CMTR1001	CMTR1001	CMTR1505	CMTR1001	CMTR1001	CMTR1001	CMTR1505	CMTR1505	CMTR1505	CMTR2001	CMTR3005	CMTR3005	CMTR3005	CMTR3005	CMTR3005
		IG1MTR1729	N/A	IG1MTR1514			N/A	IG1MTR1514	N/A	IG1MTR3515	N/A	IG1MTR1514	N/A	IG1MTR3515	N/A	IG1MTR357
		49:1	49:1	49:2	49:2	49:2	49:2	49:3	49:3	49:3						
2000	22	CMTR1001	CMTR1505	CMTR1001	CMTR1001	CMTR1505	CMTR1505	CMTR2001	CMTR3005	CMTR3005	N/A	N/A	N/A	N/A	N/A	N/A
		IG1MTR1030	N/A	IG1MTR1030		IG1MTR1514	N/A	IG1MTR1514	N/A	IG1MTR3515						
		49:1	49:1	49:2	49:2	49:2	49:2	49:3	49:3	49:3						
2000	26	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR2001	N/A	N/A	N/A	N/A	N/A	N/A
		IG1MTR1729	N/A	IG1MTR1729		IG1MTR1031	N/A	IG1MTR2504	N/A	IG3MTR2013						
		49:1	49:1	49:1	49:2	49:2	49:2	49:2	49:2	49:2	49:3	49:3	49:3	49:3	49:3	49:3
2000	30	CMTR1001	CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR3005	CMTR3005	CMTR2001	CMTR3005	CMTR3005	CMTR3005	CMTR3005	CMTR3005
		IG1MTR1729	N/A		IG1MTR1030		N/A	IG1MTR1514		IG1MTR3515	N/A	IG3MTR3014	N/A	IG1MTR3515	N/A	IG1MTR351
		49:1	49:1	49:2	49:2	49:2	49:2	49:3	49:3	49:3						
2500	22	CMTR1001	CMTR1505	CMTR1001	CMTR1001	CMTR3005	CMTR3005	CMTR2001	CMTR3005	CMTR3005	N/A	N/A	N/A	N/A	N/A	N/A
		IG1MTR1030	N/A	IG1MTR1030		IG1MTR1514	N/A	IG3MTR2013	N/A	IG1MTR3515						
		49:1	49:1	49:2	49:2	49:2	49:2	49:3	49:3	49:3						
2500	26	CMTR1001	CMTR1001	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR2001	CMTR2001	CMTR2001	N/A	N/A	N/A	N/A	N/A	N/A
		IG1MTR1729	N/A	IG1MTR1729		IG3MTR2013	N/A	IG1MTR2504	N/A	IG3MTR2013	40.0	40.0	40.0	40.0	40.0	40.0
0500		49:1	49:1	49:1	49:2	49:2	49:2	49:2	49:2	49:2	49:3	49:3	49:3	49:3	49:3	49:3
2500	30	CMTR1001	CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR3005	CMTR3005	CMTR2501	CMTR4005	CMTR4005	CMTR4005	CMTR4005	CMTR4005
		IG1MTR1729	N/A	IG1MTR1514	IG1MTR1030	IG1M1R2504	N/A	IG1MTR1514	N/A	IG1MTR3515	N/A	IG3MTR3014	N/A	IG1MTR3515	N/A	IG1MTR351
									C	OMBINED ALL V	VHEEL		HOLL	STER-W		τV
		ERWISE SPE								IZES TO ONE P						
		AWINGS FOR	SPECIFIC	MOTOR DE	I AIL AND		100-FPM 550			PDATED PARTS		O 3/23 TITLE	EL.	EVATOR CO	D. LLC	
						В	22-WHEEL 2:			TO MOTOR PRI		D/23 IIILE				
Z. CELL	FURMATIS	S AS FOLLOV	v5.				MTR2501, PU		1/23	PUR #1764			ASS	Y, GT11, LEF	T HAND	
		5	∕−GF/	AR RATIO			AWING IS SUPPLIED A	AS A REPRESENTATION (CO. LLC ("MANUFACTUR	OF THE EQUIPMENT		LE PROJECTI		ALE MATERIAL		REFF	RENCE TOL
	/EG MOTOF RT NUMBEF		:Х 🖌 🔍		MOTOD	SUPPLY. S	SLIGHT ADJUSTMENTS	S MAY OCCUR DURING M ICATIONS NOT APPROVE	IANUFACTURING AND			BY	SEF	E PARTS LIS		INSIONS REFERENC
FAF		CMTR				MANUF	ACTURER MAY AFFEC RELEASES MANU	T OPERATION, VOIDS AN JFACTURER OF ALL LIAB	IY WARRANTY AND ILITY.							SPECIFIED
		IGXMT	./	PART NUM	IDEK		JMENT CONTAINS CON T BE REPRODUCED	NFIDENTIAL AND PROPR OR DIVULGED, IN WHOLE	ETARY INFORMATION		J.A.	SHEET SIZE	DATE			GT11-L
							WRITTEN AUTHORIZA	ATION FROM THE MANUF	ACTURER.			B	4/	/25/2023		SHEET 7 OI

Page 12

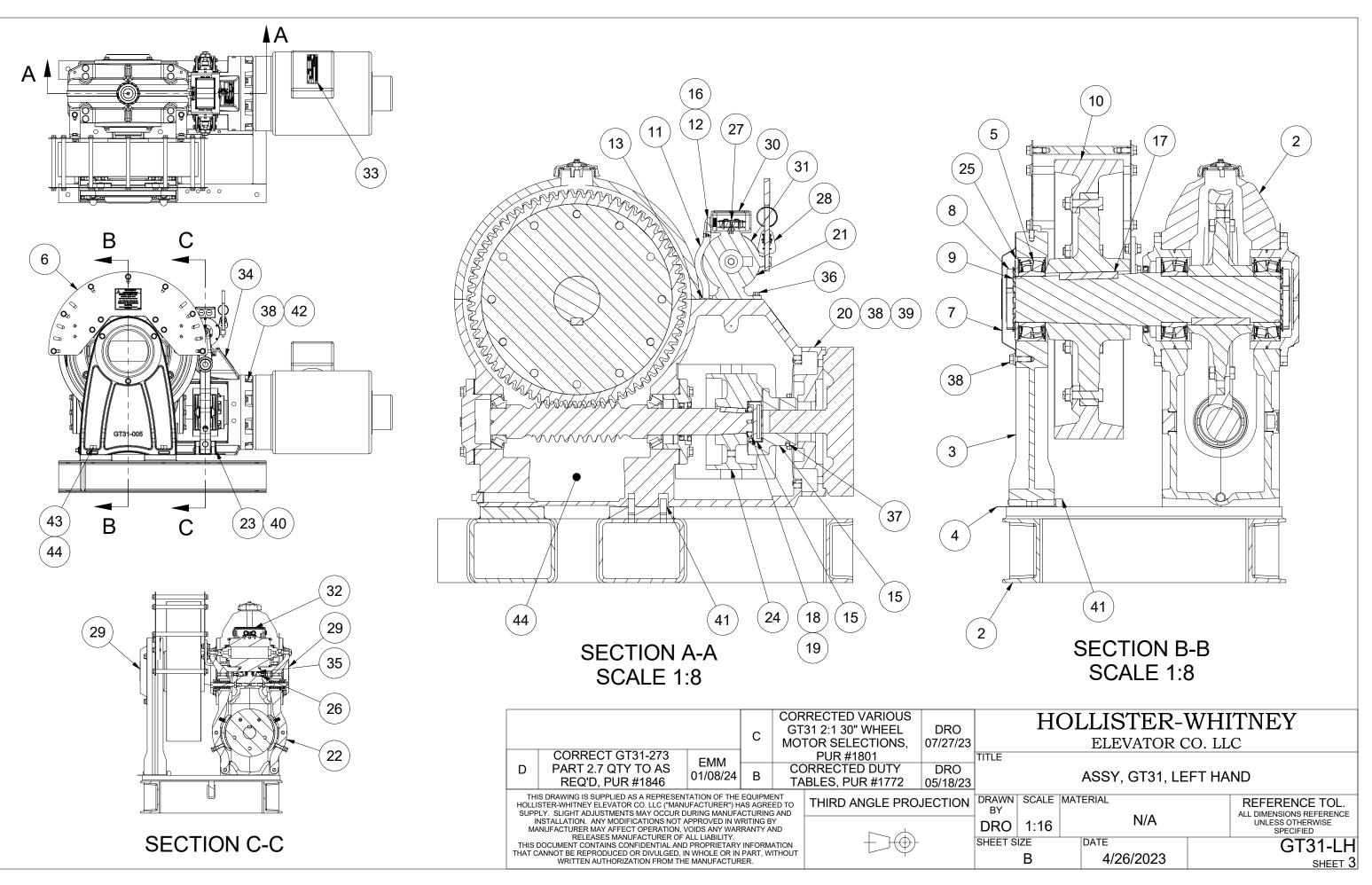
SPEED	(ft/min)	50	75	100	125	150	175	200 R CHART 2:1	225	250	275	300	325	350	375	400
CAP (lbs)	SHEAVE SIZE (in)	50	75	100	125	150	175	200	225	230	275	300	525	350	375	400
		49:1	49:1	49:2	49:2	49:2	49:2	49:3	49:3	49:3						
3000	22	CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR3005	CMTR3005	CMTR2001	CMTR3005	CMTR3005	N/A	N/A	N/A	N/A	N/A	N/A
		IG1MTR1030	N/A	IG1MTR1030	IG1MTR1031	IG1MTR1514	N/A	IG3MTR2013	N/A	IG1MTR3515						
		49:1	49:1	49:2	49:2	49:2	49:2	49:3	49:3	49:3						
3000	26	CMTR1001	CMTR1001	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR2501	CMTR2501	CMTR2501	N/A	N/A	N/A	N/A	N/A	N/A
		IG1MTR1729	N/A	IG1MTR1729	IG1MTR1030	IG3MTR2013	N/A	IG1MTR2504	N/A	IG3MTR3013						
		49:1	49:1	49:1	49:2	49:2	49:2	49:2	49:2	49:2	49:3	49:3	49:3	49:3	49:3	49:3
3000	30	CMTR1001	CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR3005	CMTR3005	CMTR2501	CMTR4005	CMTR4005	CMTR4005	CMTR4005	CMTR400
		IG1MTR1729	N/A	IG1MTR1514	IG1MTR1030	IG1MTR2504	N/A	IG3MTR3014	N/A	IG1MTR3515	N/A	IG3MTR3014	N/A	IG1MTR3515	N/A	IG1MTR351
		49:1	49:1	49:2	49:2	49:2	49:2	49:3	49:3	49:3						
3500	22	CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR3005	CMTR3005	CMTR2001	CMTR4005	CMTR4005	N/A	N/A	N/A	N/A	N/A	N/A
		IG1MTR1030	N/A	IG1MTR1030	IG3MTR2013	IG1MTR1514	N/A	IG3MTR2013	N/A	IG1MTR3515						
		49:1	49:1	49:2	49:2	49:2	49:2	49:3	49:3	49:3						
3500	26	CMTR1001	CMTR1001	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR2501	CMTR2501	CMTR2501	N/A	N/A	N/A	N/A	N/A	N/A
		IG1MTR1729	N/A	IG1MTR1729	IG3MTR2030	IG3MTR2013	N/A	IG1MTR2504	N/A	IG3MTR3013						
		49:1	49:1	49:1	49:2	49:2	49:2	49:2	49:2	49:2	49:3	49:3	49:3	49:3		
3500	30	CMTR1001	CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR3005	CMTR3005	CMTR3001	CMTR5005	CMTR5005	CMTR5005	N/A	N/A
		IG1MTR1729	N/A	IG1MTR1514	IG3MTR2030	IG1MTR2504	N/A	IG3MTR3014	N/A	IG1MTR3515	N/A	IG3MTR3014	N/A	IG1MTR3515		
		49:1	49:1	49:2	49:2	49:2	49:2	49:3	49:3	49:3						
4000	22	CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR3005	CMTR3005	CMTR2501	CMTR4005	CMTR4005	N/A	N/A	N/A	N/A	N/A	N/A
		IG1MTR1030	N/A	IG3MTR2030	IG3MTR2013	IG3MTR3014	N/A	IG3MTR3013	N/A	IG1MTR3515						
		49:1	49:1	49:2	49:2	49:2	49:2	49:3	49:3	49:3						
4000	26	CMTR1001	CMTR1001	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR3001	CMTR3001	CMTR3001	N/A	N/A	N/A	N/A	N/A	N/A
		IG1MTR1729	N/A	IG1MTR1729	IG3MTR2030	IG3MTR2013	N/A	IG1MTR2504	N/A	IG3MTR3013						
		49:1	49:1	49:1	49:2	49:2	49:2	49:2	49:2	49:2	49:3	49:3				
4000	30	CMTR2001	CMTR2001	CMTR3005	CMTR2001	CMTR2501	CMTR2501	CMTR4005	CMTR4005		CMTR5001	CMTR5005	N/A	N/A	N/A	N/A
		IG1MTR1729	N/A	IG1MTR1514	IG3MTR2030	IG1MTR2504	N/A	IG3MTR3014	N/A	IG1MTR3515	N/A	IG3MTR5014				
		49:1	49:1	49:2	49:2	49:2										
4500	22	CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR3005	GT31	GT31	GT31	GT31	N/A	N/A	N/A	N/A	N/A	N/A
		IG1MTR1030	N/A	IG3MTR2030	IG3MTR2013	IG3MTR3014										
		49:1	49:1	49:2	49:2	49:2										
4500	26	CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR2001	GT31	GT31	GT31	GT31	N/A	N/A	N/A	N/A	N/A	N/A
		IG1MTR1729	N/A	IG1MTR1729												
		49:1	49:1	49:1	49:2	49:2										
4500	30	CMTR2001	CMTR2001	CMTR3005	CMTR2501	CMTR2501	GT31	GT31	GT31	GT31	N/A	N/A	N/A	N/A	N/A	N/A
		IG1MTR1729	N/A	IG1MTR1514	IG3MTR2030	IG1MTR2504										
										OMBINED ALL V					77 77/7	
NOTES UN	NLESS OTH	ERWISE SPE	CIFIED:							SIZES TO ONE P			HOLLI	STER-W	HIINE	ĽΥ
		AWINGS FOR	R SPECIFIC	MOTOR DET	AILS AND					JPDATED PARTS			EL	EVATOR CO). LLC	
	RACTERISTI						100-FPM 550 22-WHEEL 2:			MOVED MOTOR		/23 TITLE				
2. CELL	FORMAT IS	S AS FOLLOV	VS:				MTR2501, PU	I VVAS 00/1		TO MOTOR PRI PUR #1764			ASS	Y, GT11, LEF	T HAND	
				AR RATIO		THIS DR	AWING IS SUPPLIED A	S A REPRESENTATION				DRAWN SC	ALE MATERIAL			
	EG MOTOR	- 10				SUPPLY. S	SLIGHT ADJUSTMENTS	CO. LLC ("MANUFACTUR MAY OCCUR DURING M	IANÚFACTURING AN		LE PROJECTI	BY				RENCE TOL.
PAF		CMTR):X ×	IMPERIAL			ACTURER MAY AFFEC	ICATIONS NOT APPROVE T OPERATION, VOIDS AN	IY WARRANTY AND			DRO	5EE	PARTS LIST		SS OTHERWISE SPECIFIED
		IGXMT	./	PART NUM	IBER		IMENT CONTAINS CON	IFACTURER OF ALL LIAB	ETARY INFORMATIC		$\mathbf{y}_{(0)}$	SHEET SIZE	DATE			GT11-LI
						I HAT CANNO		OR DIVULGED, IN WHOLE			T	B		25/2023		SHEET 8 OF

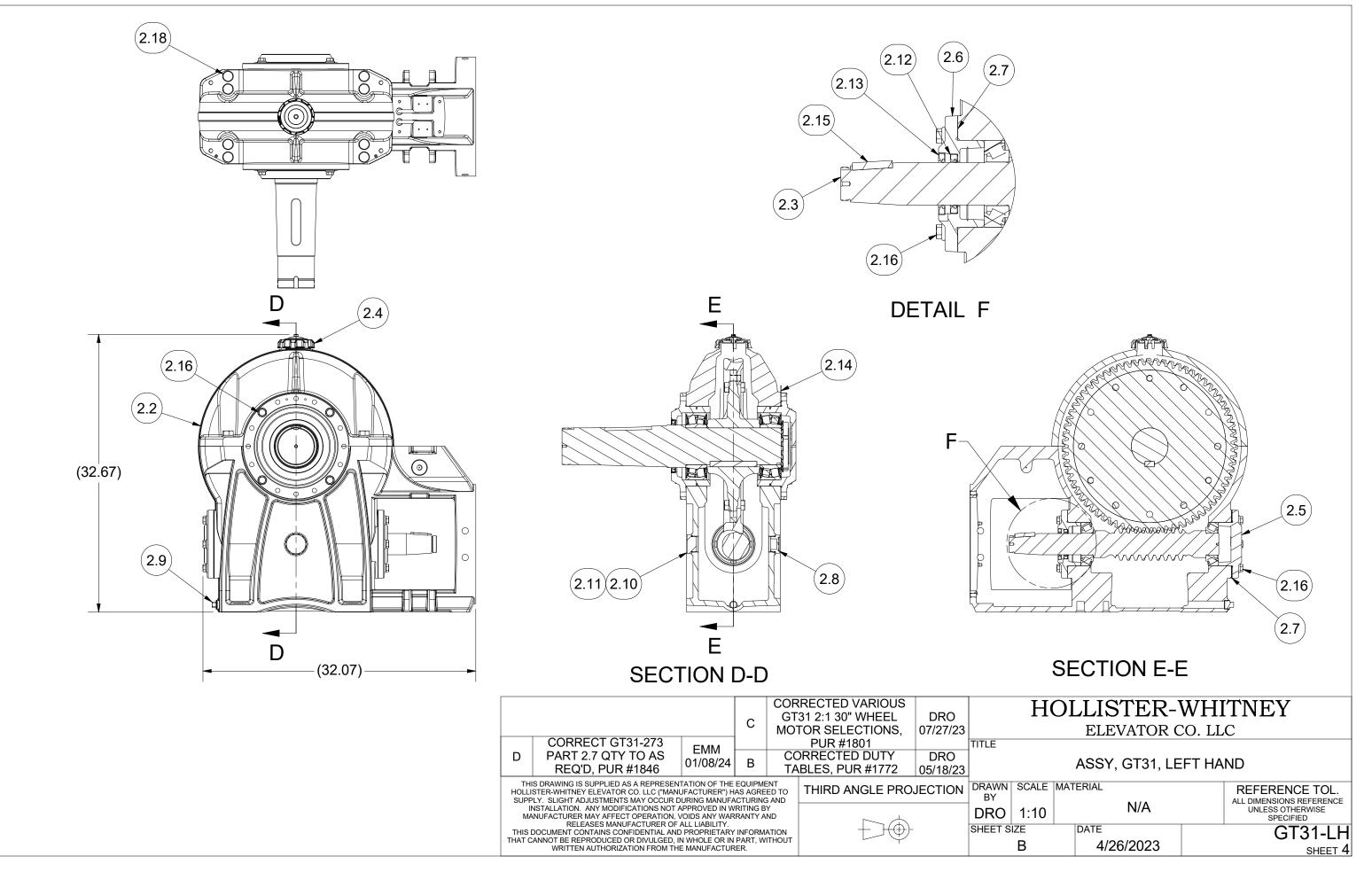

	1			1				CHART 2:1	1				1	1	-	
SPEED	(ft/min)	50	75	100	125	150	175	200	225	250	275	300	325	350	375	400
CAP (lbs)	SHEAVE SIZE (in)															
		49:1	49:1	49:2	49:2	49:2										
5000	22	CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR3005	GT31	GT31	GT31	GT31	N/A	N/A	N/A	N/A	N/A	N/A
		IG1MTR1030	N/A	IG3MTR2030	IG3MTR2013											
5000	00	49:1	49:1	49:2	49:2	49:2	0704	0704	0704	OTA	N1/A	N1/A	N1/A	N1/A	N1/A	N1/A
5000	26	CMTR2001 IG1MTR1729	CMTR2001	CMTR2501 IG1MTR1729	CMTR2501	CMTR2501 IG3MTR2013	GT31	GT31	GT31	GT31	N/A	N/A	N/A	N/A	N/A	N/A
		49:1	N/A 49:1	49:1	49:2	49:2										
5000	30	CMTR2001	CMTR2001	CMTR3005	49.2 CMTR2501	49.2 CMTR3001	GT31	GT31	GT31	GT31	N/A	N/A	N/A	N/A	N/A	N/A
5000	50	IG1MTR1729	N/A	IG1MTR1514		IG1MTR2504	0151	0131	0101	0101	IN/A					
		49:1	49:1	49:2	10011112000	10 11/1 (2004										
5500	22	CMTR2001	CMTR3005	CMTR2001	GT31	GT31	GT31	GT31	GT31	GT31	N/A	N/A	N/A	N/A	N/A	N/A
		IG1MTR1030	N/A	IG3MTR2030										-		
		49:1	49:1	49:2												
5500	26	CMTR2001	CMTR2001	CMTR2501	GT31	GT31	GT31	GT31	GT31	GT31	N/A	N/A	N/A	N/A	N/A	N/A
		IG1MTR1729	N/A	IG1MTR1729												
		49:1	49:1	49:1												
5500	30	CMTR2001	CMTR2001	CMTR3005	GT31	GT31	GT31	GT31	GT31	GT31	N/A	N/A	N/A	N/A	N/A	N/A
		IG1MTR1729	N/A	IG3MTR3014												
		49:1	49:1	49:2												
6000	22	CMTR2001	CMTR3005	CMTR2501	GT31	GT31	GT31	GT31	GT31	GT31	N/A	N/A	N/A	N/A	N/A	N/A
		IG1MTR1030	N/A	IG3MTR2030												
0000		49:1	49:1	49:2	0704	0704	OTA	OTOI	OTA	OTO		N1/A	N 1/A	N1/A	N1/A	
6000	26	CMTR2001 IG1MTR1729	CMTR2001	CMTR3001	GT31	GT31	GT31	GT31	GT31	GT31	N/A	N/A	N/A	N/A	N/A	N/A
		49:1	N/A 49:1	IG1MTR1729 49:1												
6000	30	49.1 CMTR2001	49.1 CMTR2001	49.1 CMTR3005	GT31	GT31	GT31	GT31	GT31	GT31	N/A	N/A	N/A	N/A	N/A	N/A
0000	50	IG1MTR1729	N/A	IG3MTR3014	0101	0101	0101	0131	0101	0101	IN/A					
NOTES UN	NLESS OTH	ERWISE SPE	CIFIED:							MBINED ALL WH ZES TO ONE PRI			HOLLIS	STER-V	VHITNE	CY
		AWINGS FOR	SPECIFIC	MOTOR DET	AILS AND				UP	DATED PARTS L	IST, DRO		ELE	EVATOR CO	D. LLC	
	RACTERIST	ICS. S AS FOLLOV	VS:			B	100-FPM 5500 22-WHEEL 2:1 MTR2501, PU		ко т	OVED MOTOR DA O MOTOR PRIN PUR #1764			ASSY	′, GT11, LEF	T HAND	
			∕−GF/	AR RATIO		THIS DRA	AWING IS SUPPLIED AS	S A REPRESENTATION	OF THE EQUIPMENT RER") HAS AGREED TO			DRAWN SC			REE	RENCE TO
	/EG MOTOF RT NUMBEF		:Х 🖌 🛛 СС,	IMPERIAL		SUPPLY. S INSTAL	LIGHT ADJUSTMENTS	MAY OCCUR DURING M CATIONS NOT APPROV	MANUFACTURING AND ED IN WRITING BY			BY	SEE	PARTS LIS		NSIONS REFERE
					NUTUR	MANUFA	CTURER MAY AFFECT	FOPERATION, VOIDS A	NY WARRANTY AND		1	DRO				SPECIFIED
17.		[™] CMTR	XXXX 🦯	PART NUM	IRER			FACTURER OF ALL LIAE	BILITY.	1	16	SHEET SIZE	DATE			GT11-


ECIFI		RTS LIST				
			DES	CRIPTIC	NC	
		MOTOF	R, C-FLA	NGE - I	REFERE	ENCE
		-01 =		Y, CENT 2 = 71:2	ER 2, -03 = 7	/1:3
					BEARIN 2, -03 = 7	
		-1.625 = -1.875 = -2.125 = -2.375 =	1.625", 2 1.875", 2 2.125", 3	284TC / 324TC /	256TC F 286TC F 326TC F	RAME RAME
		PL/ 312 = 254T0 313 = 324T0	C / 256T	C / 2841		TC FRAME
		A		TAINEF 26", -30 =	R, ROPE = 30"	
		ASSY,T		DN WHE 26", -30 =	EL AND = 30"	HUB
ENGT	H->			"^" Г	DIMENS	SION
			ED			INCHES
				TC / 25		21.395
	<u>}</u> ₽			TC / 23		21.635
		г	324	TC /32	6TC	23.125
Γ		LIST				ז ב
		ASSY, GT	⁻ 31, LE	FT HA	ND	
SCAL	E MAT	ERIAL				RENCE TOL.
1:10)	N	/A			NSIONS REFERENCE SS OTHERWISE SPECIFIED
SIZE B	_	DATE 4/26/20	023			GT31-LH SHEET 1
				1		

		ENG	INEERING MASTER PARTS LIST
ITEM	QTY	PART NUMBER	DESCRIPTION
1	1	GT31-273-01	ASSY, GEAR BOX, SINGLE LEAD, 71:1
		GT31-273-02	ASSY, GEAR BOX, DOUBLE LEAD, 71:2
		GT31-273-03	ASSY, GEAR BOX, TRIPLE LEAD, 71:3
2	1	GT31-OH-1	ASSY, BASE, FINISHED
3	1	GT31-005	STAND, OUTBOARD
4	AS REQ'D	GT31-062-05	SHIM, STAND, OUTBOARD, 0.0050" THICK
		GT31-062-10	SHIM, STAND, OUTBOARD, 0.0100" THICK
		GT31-062-31	SHIM, STAND, OUTBOARD, 0.0310" THICK
5	1	GT31-093	BEARING, ROLLER, SPHERICAL
6	1	GT31-250-26	ASSY, RETAINER, ROPE, 26"
	I	GT31-250-30	ASSY, RETAINER, ROPE, 30"
7	1	GT31-281	COVER, STAND, OUTBOARD
8	1	GT31-282	NUT, LOCK, SHAFT
9	1	GT31-283	WASHER, LOCK, SHAFT
10	1	GT31-286-26	ASSY, TRACTION WHEEL AND HUB, 26"
	I		
11	0	GT31-286-30	ASSY, TRACTION WHEEL AND HUB, 30"
11	2	GT31-290	CONDUIT, METAL, FLEXIBLE, 3/8"
12		GT31-291	ADAPTER, FMC, 90 DEG ELBOW, 3/8"
13	2	GT31-293	ADAPTER, STRAIGHT, FMC, 3/8"
14	1	GT31-297-1.625	COUPLER, MOTOR, 1.625", 254TC / 256TC FRAME
		GT31-297-1.875	COUPLER, MOTOR, 1.875", 284TC / 286TC FRAME
		GT31-297-2.125	COUPLER, MOTOR, 2.125", 324TC / 326TC FRAME
		GT31-297-2.375	COUPLER, MOTOR, 2.375", 364TC / 365TC FRAME
15	1	GT31-298	ELEMENT, COUPLING
16	2	GT31-299	BUSHING, ANTI-SHORT, FEMALE, FMC, 3/8"
17	1	GT31-300	KEY, SHAFT, WHEEL
18	1	GT31-310	NUT, LOCK, SHAFT
19	1	GT31-311	WASHER, LOCK, SHAFT
20	1	GT31-312	PLATE, ADAPTER, MOTOR, 254TC / 256TC / 284TC / 286TC FRAME
		GT31-313	PLATE, ADAPTER, MOTOR, 324TC / 326TC / 364TC / 365TC FRAME
21	1	GT31-314	ASSY, SOLENOID, BRAKE
22	2	GT31-315	ASSY, ARM, BRAKE
23	2	GT31-321	PIN, PIVOT
24	1	GT31-322	DRUM, BRAKE
25	1	GT31-326	PLATE, RETENTION, BEARING, STAND
26	2	GT31-327	ASSY, SWITCH, BRAKE
27	1	GT31-358	ASSY, BLOCK, TERMINAL
28	1	P-208	MANUAL BRAKE RELEASE TAG
29	2	P-223-R	CUSTOMER NAMEPLATE
30	1	P-226	LABEL, DATA, ELECTRICAL, BRAKE
31	1	P-227	LABEL, INSTRUCTION, BRAKE
32	1	P-228	LABEL, WIRING, BRAKE
33	1	P-231	TAG, DATA, MOTOR, CONTRACT
34	1	P-236	MACHINE DATA TAG
35	•	#6-32 UNC X 7/8"	SCREW, HEX HEAD
36	4	5/16"-18 UNC X 3/4"	BOLT, HEX, SERRATED FLANGE, GRADE 5, ZINC-PLATED
30	+ 1	7/16"-14 UNC X 2-1/4"	SCREW, HEX, CAP, SOCKET HEAD, BLACK OXIDE FINISH
38		1/2"-13 UNC X 1-1/2"	BOLT, HEX, SERRATED FLANGE, GRADE 5, ZINC-PLATED
39		1/2"-13 UNC X 1-1/2"	SCREW, HEX, CAP, FLAT SOCKET HEAD, BLACK OXIDE FINISH
40	4	5/8" - MS 16624	RING, RETAINING, EXTERNAL, SERIES 3100
41	4	5/8" X 1-1/2"	PIN, DOWEL, GROUND, HARDENED
42		5/8" - 11 UNC x 1-1/2"	BOLT, HEX, SERRATED FLANGE, GRADE 5, ZINC-PLATED
43	8	3/4"-10 UNC X 2-1/2"	BOLT, HEX, GRADE 5, BLACK OXIDE FINISH
44	8	3/4"	WASHER, LOCK, HELICAL
45	2.5 gal	MOBIL SHC 636	OIL, GEAR, HIGH PRESSURE

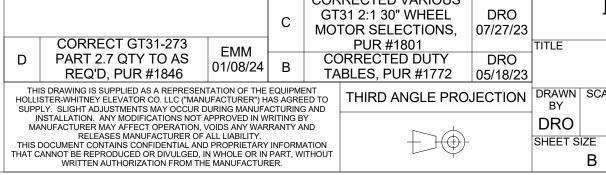
					GT31-273 PARTS LIST						
	ITEM	QTY GT31-273-01	QTY GT31-273-02	QTY GT31-273-03	PART NUMBER	DESCRIPTION					
	2.1	1	0	0	GT31-080-01	ASSY, CENTER, SINGLE LEAD					
	2.1	0	1	0	GT31-080-02	ASSY, CENTER, DOUBLE LEAD					
	2.1	0	0	1	GT31-080-03	ASSY, CENTER, TRIPLE LEAD					
	2.2	1	1	1	GT31-284	ASSY, UPPER AND LOWER HOUSING, MACHINED					
	2.3	1	0	0	GT31-294-01	ASSY, WORM SHAFT AND BEARING, 7/8" SINGLE					
	2.3	0	1	0	GT31-294-02	ASSY, WORM SHAFT AND BEARING, 7/8" DOUBLE					
	2.3	0	0	1	GT31-294-03	ASSY, WORM SHAFT AND BEARING, 7/8" TRIPLE					
	2.4	1	1	1	GT31-063	CAP, FILL, OIL					
	2.5	1	1	1	GT31-085	CAP, BEARING, REAR END					
	2.6	1	1	1	GT31-085-FE	CAP, BEARING, FORWARD END					
(D)	2.7	AS REQ'D	AS REQ'D	AS REQ'D	GT31-087	SHIM, CAP, BEARING					
\bigcirc	2.8	1	1	1	GT31-276	GLASS, SIGHT, OIL					
	2.9	1	1	1	GT31-277	PLUG, DRAIN, OIL					
	2.10	1	1	1	GT31-278	PLUG, OIL					
	2.11	1	1	1	GT31-279	O-RING, PLUG, OIL					
	2.12	1	1	1	GT31-287	SEAL, SHAFT, RADIAL					
	2.13	1	1	1	GT31-287-1	SEAL, SHAFT, RADIAL					
	2.14	4	4	4	GT31-295	SHIM, ECCENTRIC, EDGE BONDED					
	2.15	1	1	1	GT31-301	KEY, SHAFT, WORM					
	2.16	20	20	20	1/2"-13 UNC X 1.5	BOLT, HEX, SERRATED FLANGE, GRADE 5, ZINC-PLATED					




GT31-273

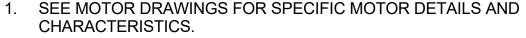
GT31-LH

		С		RECTED VARIOU 31 2:1 30" WHEEL	S	DRO		H	OL	LISTER-V	WHI	TNEY	
	CT GT31-273				MOTOR SELECTIONS,			ELEVATOR CO. LLC					
RECT GT31-273				PUR #1801			TITLE						
				RRECTED DUTY		DRO			^	ASSY, GT31, LE	ст цл		
ע'D, PUR #1846 🛛 🔍	D, PUR #1846				ABLES, PUR #1772				P	4331, GI31, LE	гіпа		
EY ELEVATOR CO. LLC ("MANUFAG	SUPPLIED AS A REPRESENTATION OF THE EQUIPMENTY ELEVATOR CO. LLC ("MANUFACTURER") HAS AGREED				RO.	JECTION	DRAWN BY	SCALE	MATE			REFERENCE TOL.	
DJUSTMENTS MAY OCCUR DURING MANUFACTURING ANY MODIFICATIONS NOT APPROVED IN WRITING BY MAY AFFECT OPERATION, VOIDS ANY WARRANTY AN					_		DRO	1:10		N/A		UNLESS OTHERWISE SPECIFIED	
CONTAINS CONFIDENTIAL AND PR	SES MANUFACTURER OF ALL LIABILITY. TAINS CONFIDENTIAL AND PROPRIETARY INFORMATI					SHEET S		D	DATE		GT31-LH		
AUTHORIZATION FROM THE AND PROPRIETARY INFORMATION PRODUCED OR DIVULGED, IN WHOLE OR IN PART, WITHOU AUTHORIZATION FROM THE MANUFACTURER.			THOUT					С		4/26/2023		SHEET 2	

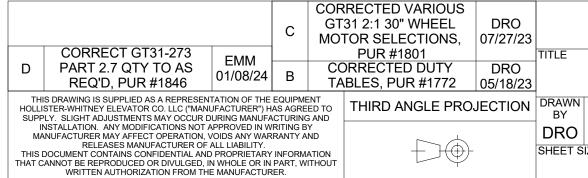

Page 17

SPEED	(ft/min)	50	75	100	125	150	175	200	250	300	350	400	450	500
CAP (lbs)	SHEAVE SIZE (in)		10	100	120	100		200	200		000	100	100	
		71:1	71:1	71:1	71:1	71:1	71:2	71:2	71:2	71:2	71:3	71:3	71:3	71:
2000	26	CMTR1001	CMTR1001	CMTR1001	CMTR1505	CMTR1505	CMTR2001	CMTR2001	CMTR3005	CMTR3005	CMTR2501	CMTR4005	CMTR4005	CMTR
2000	20	N/A	N/A	N/A	N/A	N/A	N/A	IG3MTR2013	IG3MTR3014	IG1MTR3515	IG3MTR3013	IG3MTR3014	IG1MTR3515	IG3MT
		71:1	71:1	71:1	71:1	71:1	71:2	71:2	71:2	71:2	71:3	71:3	71:3	71:
2000	30	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR2501	CMTR2501	CMTR4005	CMTR
2000		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	IG3MTR3014	IG3MTR3013	IG3MTR3013	IG3MTR3014	IG1MT
		71:1	71:1	71:1	71:1	71:1	71:2	71:2	71:2	71:2	71:3	71:3	71:3	71
2500	26	CMTR1001	CMTR1001	CMTR1001	CMTR1505	CMTR1505	CMTR2001	CMTR2001	CMTR3005	CMTR3005	CMTR2501	CMTR4005	CMTR4005	CMTR
2000	20	N/A	N/A	N/A	N/A	N/A	N/A	IG3MTR2013	IG3MTR3014	IG1MTR3515	IG3MTR3013	IG3MTR3014	IG3MTR5023	IG3MT
		71:1	71:1	71:1	71:1	71:1	71:2	71:2	71:2	71:2	71:3	71:3	71:3	71
2500	30	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR3005	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR3001	CMTR3001	CMTR5005	CMTR
2000		N/A	N/A	N/A	N/A	N/A	N/A	N/A	IG3MTR2013	IG3MTR3014	IG3MTR3013	IIG3MTR301	IG3MTR5014	IG3MT
		71:1	71:1	71:1	71:1	71:1	71:2	71:2	71:2	71:2	71:3	71:3	71:3	71
3000	26	CMTR2001	CMTR2001	CMTR2001	CMTR1505	CMTR3005	CMTR2001	CMTR2001	CMTR3005	CMTR3005	CMTR3001	CMTR5005	CMTR5005	CMTR
		N/A	N/A	IG3MTR2013	IG1MTR1514	IG1MTR3515	N/A	IG3MTR2013	IG3MTR3014	IG1MTR3515	IG3MTR3013	IG3MTR5014	IG3MTR5023	IG3MT
		71:1	71:1	71:1	71:1	71:1	71:2	71:2	71:2	71:2	71:3	71:3	71:3	71
3000	30	CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR2501	CMTR2501	CMTR2501	CMTR4005	CMTR5001	CMTR5001	CMTR5005	CMTR
		N/A	N/A	IG1MTR1030	IG1MTR1514	IG1MTR1514	N/A	IG1MTR2504	IG3MTR3013	IG3MTR3014	IG3MTR3013	IG3MTR5013	IG3MTR5014	IG3MT
		71:1	71:1	71:1	71:1	71:1	71:2	71:2	71:2	71:2	71:3	71:3	71:3	71
3500	26	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR3005	CMTR2501	CMTR2501	CMTR4005	CMTR4005	CMTR5001	CMTR5005	CMTR5005	CMTR
		N/A	N/A	IG3MTR2013	IG1MTR1514	IG1MTR3515	N/A	IG3MTR2013	IG3MTR3014	IG1MTR3515	IG3MTR5013	IG3MTR5014	IG3MTR5023	IG3MT
		71:1	71:1	71:1	71:1	71:1	71:2	71:2	71:2	71:2	71:3	71:3	71:3	71
3500	30	CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR2501	CMTR2501	CMTR3001	CMTR4005	CMTR5001	CMTR5001	CMTR6005	CMTR
		N/A	N/A	IG3MTR2030	IG3MTR2013	IG3MTR3014	N/A	IG1MTR2504	IG3MTR3013	IG3MTR3014	IG3MTR5013	IG3MTR5013	IG3MTR5014	IG3MT
		71:1	71:1	71:1	71:1	71:1	71:2	71:2	71:2	71:2	71:3	71:3	71:3	
4000	26	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR3005	CMTR2501	CMTR2501	CMTR4005	CMTR4005	CMTR5001	CMTR6005	CMTR6005	N
		N/A	N/A	IG3MTR2013	IG1MTR1514	IG1MTR3515	N/A	IG3MTR3013	IG3MTR3014	IG3MTR5023	IG3MTR5013	IG3MTR5014	IG3MTR5023	
		71:1	71:1	71:1	71:1	71:1	71:2	71:2	71:2	71:2	71:3	71:3		
4000	30	CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR3001	CMTR3001	CMTR3001	CMTR5005	CMTR5001	CMTR5001	71:3 N/A	N
		N/A	N/A	IG3MTR2030	IG3MTR2013	IG3MTR3014	N/A	IG1MTR2504	IG3MTR3013	IG3MTR5014	IG3MTR5013	IG3MTR5013	IG3MTR5014	
		71:1	71:1	71:1	71:1	71:1	71:2	71:2	71:2	71:2	71:3	71:3		
4500	26	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR3005	CMTR3001	CMTR3001	CMTR4005	CMTR4005	CMTR5001	CMTR6005	N/A	N
		N/A	N/A	IG3MTR2013	IG3MTR3014	IG1MTR3515	N/A	IG3MTR3013	IG3MTR5014	IG3MTR5023	IG3MTR5013	IG3MTR5014		
		71:1	71:1	71:1	71:1	71:1	71:2	71:2	71:2	71:2	71:3	71:3		
4500	30	CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR3001	CMTR3001	CMTR5001	CMTR5005	CMTR5001	CMTR5001	N/A	N
		N/A	N/A	IG3MTR2030	IG3MTR2013		N/A	IG1MTR2504	IG3MTR3013		IG3MTR5013			
	1							CORRECTE						
<u>FES UNLESS</u>	S OTHERWISE SPEC	IFIED:						CT31 2·1 3		DRO	HOLL	JSTER-	WHITNI	ĽΥ
SEE MOTO	R DRAWINGS FOR S	SPECIFIC MO	TOR DETAIL	S AND			C	MOTOR SE		7/27/23	Г	LEVATOR C		

2. CELL FORMAT IS AS FOLLOWS:



/1	:3	/1:3	/1:3	/1:3
MTF	3001	CMTR5005	CMTR5005	CMTR5005
3MT	R3013	IG3MTR5014	IG3MTR5023	IG3MTR5023
71	:3	71:3	71:3	71:3
MTF	85001	CMTR5001	CMTR5005	CMTR5005
3MT	R3013	IG3MTR5013	IG3MTR5014	IG3MTR5014
71	:3	71:3	71:3	71:3
MTF	85001	CMTR5005	CMTR5005	CMTR5005
3MT	R5013	IG3MTR5014	IG3MTR5023	IG3MTR5023
71	:3	71:3	71:3	71:3
MTF	\$5001	CMTR5001	CMTR6005	CMTR6005
3MT	R5013	IG3MTR5013	IG3MTR5014	IG3MTR5014
71	:3	71:3	71:3	
MTF	\$5001	CMTR6005	CMTR6005	N/A
3MT	R5013	IG3MTR5014	IG3MTR5023	
71	:3	71:3	71:3 N/A	
MTF	85001	CMTR5001	IG3MTR5014	N/A
3MT	R5013	IG3MTR5013	IG3WITR5014	
71	:3	71:3		
MTF	85001	CMTR6005	N/A	N/A
3MT	R5013	IG3MTR5014		
71	:3	71:3		
MTF	85001	CMTR5001	N/A	N/A
3MT	R5013	IG3MTR5013		
		·		
тт	<u></u>			
H(JLL	ISTER-	WHITNI	±Y
	E	LEVATOR C	CO. LLC	
	AS	SY, GT31, LE	FT HAND	
ALE	MATERIA	AL.	DEED	RENCE TOL.
		N/A	ALL DIME	NSIONS REFERENCE
				ESS OTHERWISE SPECIFIED
	DAT			GT31-LH
		4/26/2023		SHEET 5
				n
				Page 19


					N	IOTOR CHAR	T 1:1 ROPIN	IG						
SPEED	(ft/min)	50	75	100	125	150	175	200	250	300	350	400	450	500
CAP (lbs)	SHEAVE SIZE (in)													
		71:1	71:1	71:1	71:1	71:1	71:2	71:2	71:2	71:2	71:3			
5000	26	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR3005	CMTR3001	CMTR3001	CMTR5005	CMTR5005	CMTR5001	N/A	N/A	N/A
		N/A	N/A	IG3MTR2013	IG3MTR3014	IG1MTR3515	N/A	IG3MTR3013	IG3MTR5014	IG3MTR5023	IG3MTR5013			1
		71:1	71:1	71:1	71:1	71:1	71:2	71:2	71:2	71:2				
5500	26	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR3005	CMTR5001	CMTR5001	CMTR5005	CMTR5005	N/A	N/A	N/A	N/A
		N/A	N/A	IG3MTR2013	IG3MTR3014	IG1MTR3515	N/A	IG3MTR3013	IG3MTR5014	IG3MTR5023				1
		71:1	71:1	71:1	71:1	71:1	71:2	71:2	71:2					
6000	26	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR3005	CMTR5001	CMTR5001	CMTR6005	N/A	N/A	N/A	N/A	N/A
		N/A	N/A	IG3MTR2013	IG3MTR3014	IG1MTR3515	N/A	IG3MTR3013	IG3MTR5014					

2. CELL FORMAT IS AS FOLLOWS:

ABB OR WEG MOTOR PART NUMBER 49:X CMTRXXXX IGXMTRXXXX A GEAR RATIO IMPERIAL MOTOR PART NUMBER

HOLLISTER-WHITNEY ELEVATOR CO. LLC

ASSY, GT31, LEFT HAND

	SCALE	MATERIAL N/A	REFERENCE TOL. ALL DIMENSIONS REFERENCE UNLESS OTHERWISE SPECIFIED
5	IZE	DATE	GT31-LH
	В	4/26/2023	SHEET 6

SPEED	(ft/min)	50	75	100	125	150	175	200	225	250
CAP (lbs)	SHEAVE SIZE (in)									
		71:1	71:1	71:2	71:2	71:2	71:3	71:3	71:3	71:3
2500	26	CMTR1001	CMTR1505	CMTR1001	CMTR1505	CMTR1505	CMTR2001	CMTR3005	CMTR3005	CMTR300
		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		71:1	71:1	71:2	71:2	71:2	71:3	71:3	71:3	71:3
2500	30	CMTR1001	CMTR1505	CMTR1001	CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR3005	CMTR30
		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		71:1	71:1	71:2	71:2	71:2	71:3	71:3	71:3	71:3
3000	26	CMTR1001	CMTR1505	CMTR1001	CMTR1505	CMTR1505	CMTR2001	CMTR3005	CMTR3005	CMTR3
		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		71:1	71:1	71:2	71:2	71:2	71:3	71:3	71:3	71:3
3000	30	CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR3005	CMTR2001	CMTR2001	CMTR3005	CMTR3
		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		71:1	71:1	71:2	71:2	71:2	71:3	71:3	71:3	71:3
3500	26	CMTR1001	CMTR1505	CMTR2001	CMTR3005	CMTR3005	CMTR2001	CMTR3005	CMTR3005	CMTR3
		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		71:1	71:1	71:2	71:2	71:2	71:3	71:3	71:3	71:
3500	30	CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR3005	CMTR2001	CMTR2001	CMTR3005	CMTR
		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		71:1	71:1	71:2	71:2	71:2	71:3	71:3	71:3	71:3
4000	26	CMTR1001	CMTR1505	CMTR2001	CMTR3005	CMTR3005	CMTR2001	CMTR3005	CMTR3005	CMTR
		N/A	N/A	IG3MTR2013	N/A	IG1MTR3515	N/A	IG3MTR3014	N/A	IG3MTF
		71:1	71:1	71:2	71:2	71:2	71:3	71:3	71:3	71:
4000	30	CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR3005	CMTR2501	CMTR2501	CMTR4005	CMTR
		N/A	N/A	N/A	IG1MTR1514	IG3MTR3014	N/A	IG3MTR3013	N/A	N//
		71:1	71:1	71:2	71:2	71:2	71:3	71:3	71:3	71:
4500	26	CMTR1001	CMTR1505	CMTR2001	CMTR3005	CMTR3005	CMTR2001	CMTR3005	CMTR4005	CMTR4
		N/A	N/A	IG3MTR2013	N/A	IG1MTR3515	N/A	IG3MTR3014	N/A	IG3MTF
		71:1	71:1	71:2	71:2	71:2	71:3	71:3	71:3	71:
4500	30	CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR3005	CMTR2501	CMTR2501	CMTR4005	CMTR
		N/A	N/A	N/A	IG3MTR2013	IG3MTR3014	N/A	IG3MTR3013	N/A	N/.
		71:1	71:1	71:2	71:2	71:2	71:3	71:3	71:3	71:
5000	26	CMTR1001	CMTR1505	CMTR2001	CMTR3005	CMTR3005	CMTR2501	CMTR4005	CMTR4005	CMTR
		N/A	N/A	IG3MTR2013	IG3MTR3014	IG1MTR3515	N/A	IG3MTR3014	N/A	IG3MTF
		71:1	71:1	71:2	71:2	71:2	71:3	71:3	71:3	71:
5000	30	CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR3005	CMTR3001	CMTR3001	CMTR4005	CMTR4
		N/A	N/A	IG1MTR2504	IG3MTR2013	IG3MTR3014	N/A	IG3MTR3013	N/A	IG1MTR

NOTES UNLESS OTHERWISE SPECIFIED:

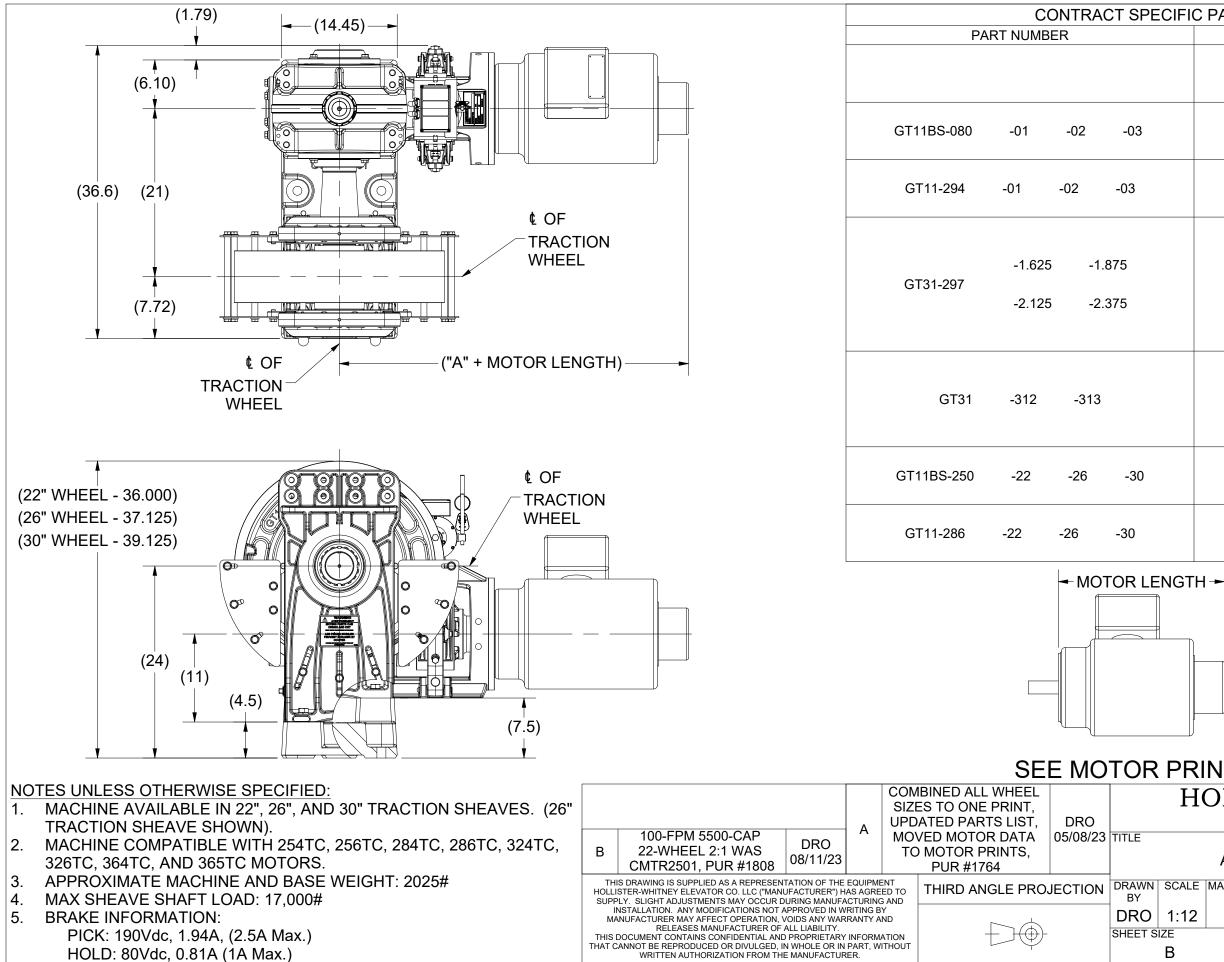
1. SEE MOTOR DRAWINGS FOR SPECIFIC MOTOR DETAILS AND CHARACTERISTICS.

2. CELL FORMAT IS AS FOLLOWS:

GEAR RATIO ABB OR WEG MOTOR 49:X CMTRXXXX IMPERIAL MOTOR PART NUMBER PART NUMBER IGXMTRXXXX 🗡

	с	GT	RECTED VARIOUS 31 2:1 30" WHEEL TOR SELECTIONS,	DRO 07/27/23		IOLLISTER-V		
CORRECT GT31-273			PUR #1801	01121123	TITLE	ELEVATOR C	0. LL	
D PART 2.7 QTY TO AS REQ'D, PUR #1846			DRRECTED DUTY BLES, PUR #1772	DRO 05/18/23		ASSY, GT31, LE	FT HAI	ND
THIS DRAWING IS SUPPLIED AS A REPRESENTATION C OLLISTER-WHITNEY ELEVATOR CO. LLC ("MANUFACTUR SUPPLY. SLIGHT ADJUSTMENTS MAY OCCUR DURING M	RER") HAS AGRE	ED TO	THIRD ANGLE PRO	JECTION	DRAWN SCALE BY			REFERENCE TOL. ALL DIMENSIONS REFERENCE
INSTALLATION. ANY MODIFICATIONS NOT APPROVE MANUFACTURER MAY AFFECT OPERATION, VOIDS AN	NY WARRANTY A				DRO	N/A		UNLESS OTHERWISE SPECIFIED
RELEASES MANUFACTURER OF ALL LIABI HIS DOCUMENT CONTAINS CONFIDENTIAL AND PROPRI AT CANNOT BE REPRODUCED OR DIVULGED, IN WHOLE	RIETARY INFORM				SHEET SIZE	DATE		GT31-LH
WRITTEN AUTHORIZATION FROM THE MANUF	FACTURER.				B	4/26/2023		SHEET 7

		MOTOR CHAF			1				1	
SPEED	(ft/min)	50	75	100	125	150	175	200	225	25
CAP (lbs)	SHEAVE SIZE (in)									
		71:1	71:1	71:2	71:2	71:2	71:3	71:3	71:3	71:
5500	26	CMTR1001	CMTR1505	CMTR2001	CMTR3005	CMTR3005	CMTR2501	CMTR4005	CMTR4005	CMTR
		N/A	N/A	IG3MTR2013	IG3MTR3014	IG1MTR3515	N/A	IG3MTR3014	N/A	IG3MT
		71:1	71:1	71:2	71:2	71:2	71:3	71:3	71:3	71
5500	30	CMTR2001	CMTR3005	CMTR2001	CMTR2001	CMTR3005	CMTR3001	CMTR3001	CMTR5005	CMTF
		N/A	N/A	IG1MTR2504	IG3MTR2013	IG3MTR3014	N/A	IG3MTR3013	N/A	IG3MT
		71:1	71:1	71:2	71:2	71:2	71:3	71:3	71:3	71
6000	26	CMTR1001	CMTR1505	CMTR2001	CMTR3005	CMTR3005	CMTR3001	CMTR4005	CMTR4005	CMTR
		N/A	N/A	IG3MTR2013	IG3MTR3014	IG1MTR3515	N/A	IG3MTR5014	N/A	IG3MT
		71:1	71:1	71:2	71:2	71:2	71:3	71:3	71:3	71
6000	30	CMTR2001	CMTR3005	CMTR2001	CMTR2001	CMTR4005	CMTR3001	CMTR3001	CMTR5005	CMTF
		N/A	N/A	IG1MTR2504	IG3MTR2013	IG3MTR3014	N/A	IG3MTR5013	N/A	IG3MT
		71:1	71:1	71:2	71:2	71:2	71:3	71:3	71:3	71
7000	26	CMTR2001	CMTR3005	CMTR2001	CMTR3005	CMTR4005	CMTR3001	CMTR5005	CMTR5005	CMTF
		IG3MTR2013	N/A	IG3MTR2013	IG3MTR3014	IG1MTR3515	N/A	IG3MTR5014	N/A	IG3M1
		71:1	71:1	71:2	71:2	71:2	71:3	71:3	71:3	71
7000	30	CMTR2001	CMTR3005	CMTR2501	CMTR2501	CMTR4005	CMTR5001	CMTR5001	CMTR6005	CMTF
		IG3MTR2030	N/A	IG1MTR2504	IG3MTR3013	IG3MTR3014	N/A	IG3MTR5013	N/A	IG3M1
		71:1	71:1	71:2	71:2	71:2	71:3	71:3		
8000	26	CMTR2001	CMTR3005	CMTR2501	CMTR4005	CMTR4005	CMTR5001	CMTR5005	N/A	N
		IG3MTR2013	N/A	IG3MTR2013	IG3MTR3014	IG3MTR5023	N/A	IG3MTR5014		
		71:1	71:1	71:2	71:2	71:2	71:3	71:3		
8000	30	CMTR2001	CMTR3005	CMTR3001	CMTR3001	CMTR4005	CMTR5001	CMTR5001	N/A	N
		IG3MTR2030	N/A	IG1MTR2504	IG3MTR3013	IG3MTR5014	N/A	IG3MTR5013		
		71:1	71:1	71:2	71:2	71:2	71:3	71:3		
9000	26	CMTR2001	CMTR3005	CMTR3001	CMTR4005	CMTR4005	CMTR5001	CMTR6005	N/A	N
		IG3MTR2013	N/A	IG3MTR3013	IG3MTR3014	IG3MTR5023	N/A	IG3MTR5014		
		71:1	71:1	71:2	71:2	71:2	71:3	71:3		
9000	30	CMTR2001	CMTR3005	CMTR3001	CMTR3001	CMTR5005	CMTR5001	CMTR5001	N/A	N
		IG3MTR2030	N/A	IG1MTR2504	IG3MTR3013	IG3MTR5014	N/A	IG3MTR5013		
		71:1	71:1	71:2	71:2	71:2				
10000	26	CMTR2001	CMTR3005	CMTR3001	CMTR5005	CMTR5005	N/A	N/A	N/A	N
		IG3MTR2013	N/A	IG3MTR3013	IG3MTR5014	IG3MTR5023				
		71:1	71:1	71:2	71:2	71:2				
12000	26	CMTR2001	CMTR3005	CMTR5001	CMTR5005	CMTR6005	N/A	N/A	N/A	N
		IG3MTR2013	N/A	IG3MTR3013						


NOTES UNLESS OTHERWISE SPECIFIED:

1. SEE MOTOR DRAWINGS FOR SPECIFIC MOTOR DETAILS AND CHARACTERISTICS.

2. CELL FORMAT IS AS FOLLOWS:

GEAR RATIO ABB OR WEG MOTOR 49:X 🗡 PART NUMBER IMPERIAL MOTOR CMTRXXXX PART NUMBER IGXMTRXXXX 🗡

			С	GT	RECTED VARIOUS 31 2:1 30" WHEEL TOR SELECTIONS,	DRO 07/27/23	HOLLISTER-WHITNEY ELEVATOR CO. LLC				
D	CORRECT GT31-273 PART 2.7 QTY TO AS REQ'D, PUR #1846	В		PUR #1801 DRRECTED DUTY BLES, PUR #1772	DRO 05/18/23	TITLE	E ASSY, GT31, LEFT HAND				
HOLL SUP	REQ'D, PUR #1846 THIS DRAWING IS SUPPLIED AS A REPRESENTATION OF THE EQUIPMEN HOLLISTER-WHITNEY ELEVATOR CO. LLC ("MANUFACTURER") HAS AGREED SUPPLY. SLIGHT ADJUSTMENTS MAY OCCUR DURING MANUFACTURING A INSTALLATION. ANY MODIFICATIONS NOT APPROVED IN WRITING BY MANUFACTURER MAY AFFECT OPERATION, VOIDS ANY WARRANTY AND					JECTION	DRAWN S BY DRO	SCALE MATERIAL	N/A	REFERENCE TOL. ALL DIMENSIONS REFERENCE UNLESS OTHERWISE SPECIFIED	
	RELEASES MANUFACTURER OF DOCUMENT CONTAINS CONFIDENTIAL ANI CANNOT BE REPRODUCED OR DIVULGED, I WRITTEN AUTHORIZATION FROM TH	D PROPRIETARY IN WHOLE OR IN	PART, W		+)+		SHEET SIZE		6/2023	GT31-LH SHEET 8	

Page	23
------	----

		"	A" DI	MENS	SION	
		FRAM	E SI	ZE	INC	HES
		254TC	/ 256	бТС	18.	895
j		284TC	/ 286	бТС	19.	135
		324TC	/ 326	бТС	20	625
R PRI	NT	364TC	/ 365	тс	20.	025
H	OLLIST	ER-W	Ήľ	ΓNE	ΣΥ	
	ELEVA	TOR CO	LLC	2		
	ASSY, GT1	1BS, LEF	T HA	ND		
SCALE	MATERIAL			REFE	RENCE	E TOL.
1:12	SEE PAF	RTS LIST		UNLE	NSIONS RE SS OTHER SPECIFIED	WISE
SIZE	DATE			G	Г11В	S-LH
В	4/25/2	023			SHEET	1 of 10
						-

-2.125 = 2.125", 324TC / 326TC FRAME -2.375 = 2.375", 364TC / 365TC FRAME PLATE, ADAPTER, MOTOR -312 = 254TC / 256TC / 284TC / 286TC FRAME -313 = 324TC / 326TC / 364TC / 365TC FRAME ASSY, RETAINER, ROPE -22 = 22", -26 = 26", -30 = 30" ASSY.TRACTION WHEEL AND HUB -22 = 22", -26 = 26", -30 = 30"

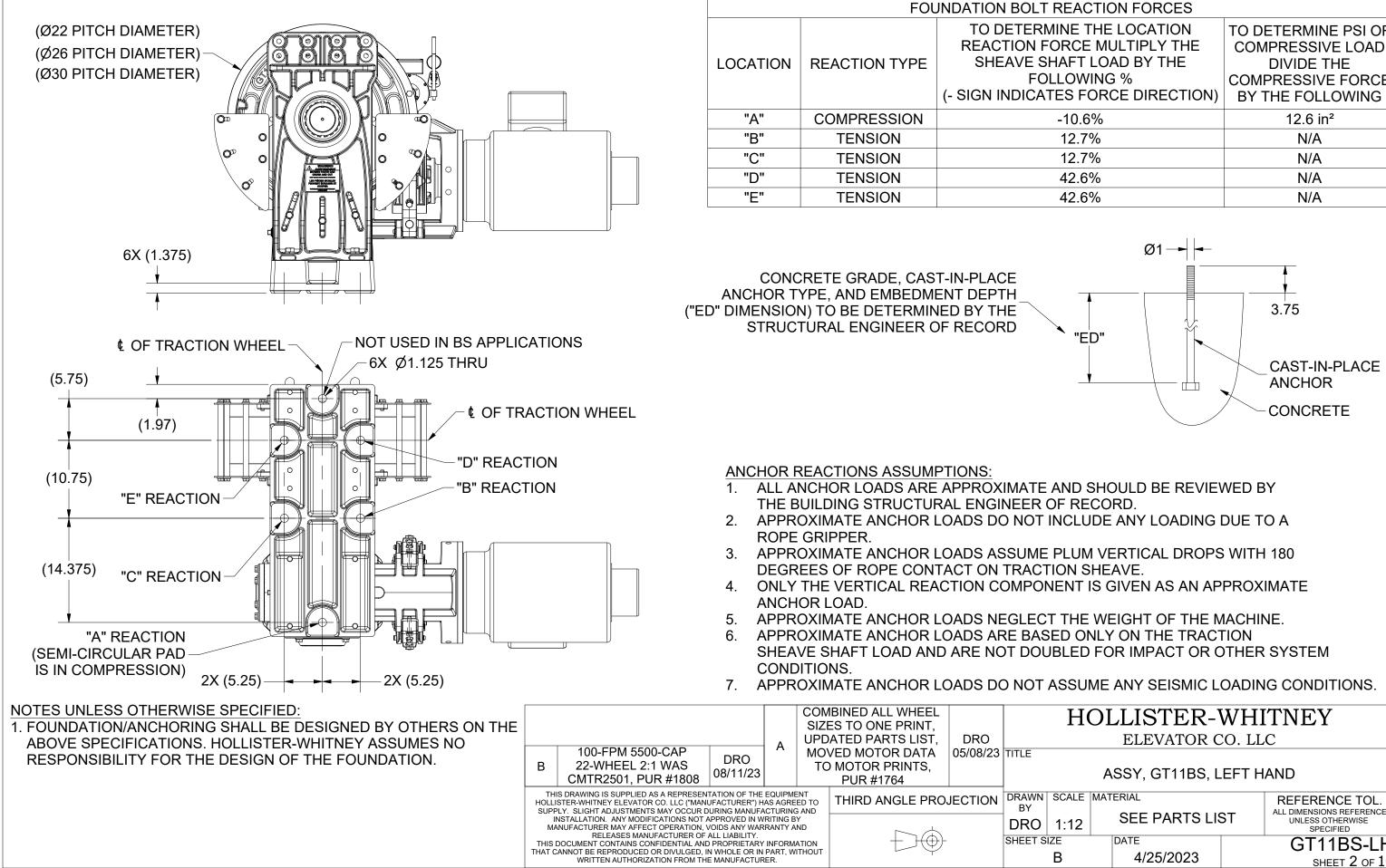
DESCRIPTION

MOTOR, C-FLANGE - REFERENCE

ASSY, CENTER

-01 = 49:1, -02 = 49:2, -03 = 49:3

ASSY, WORM AND BEARING

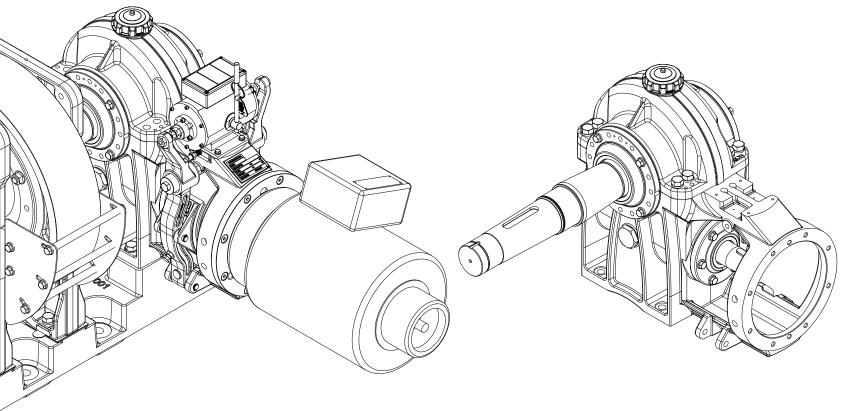

-01 = 49:1, -02 = 49:2, -03 = 49:3

COUPLER, MOTOR

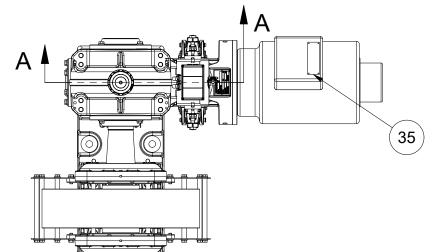
-1.625 = 1.625", 254TC / 256TC FRAME

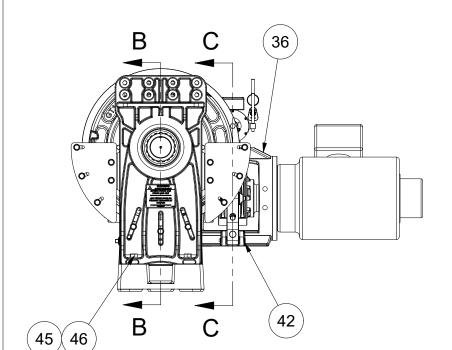
-1.875 = 1.875", 284TC / 286TC FRAME

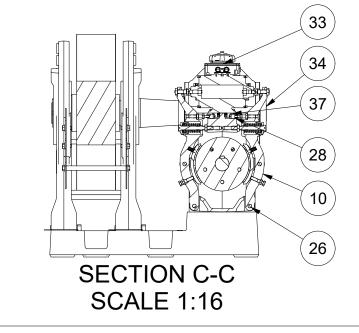
CONTRACT SPECIFIC PARTS LIST ITEMS

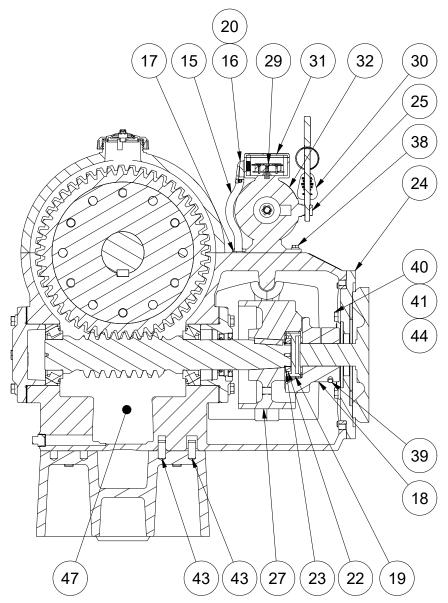


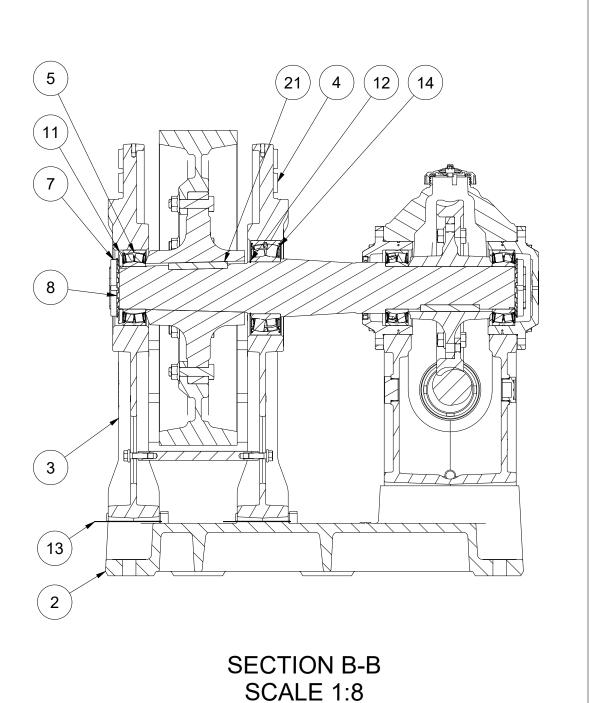
T REACTION FORCES	
MINE THE LOCATION FORCE MULTIPLY THE SHAFT LOAD BY THE DLLOWING % ATES FORCE DIRECTION)	TO DETERMINE PSI OF COMPRESSIVE LOAD DIVIDE THE COMPRESSIVE FORCE BY THE FOLLOWING
-10.6%	12.6 in ²
12.7%	N/A
12.7%	N/A
42.6%	N/A
42.6%	N/A

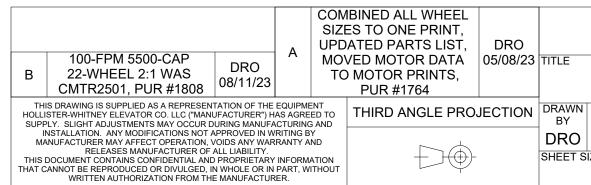

	SCALE	MATERIAL	REFERENCE TOL.
	1:12	SEE PARTS LIS	
S	IZE	DATE	GT11BS-LH
	В	4/25/2023	SHEET 2 OF 10

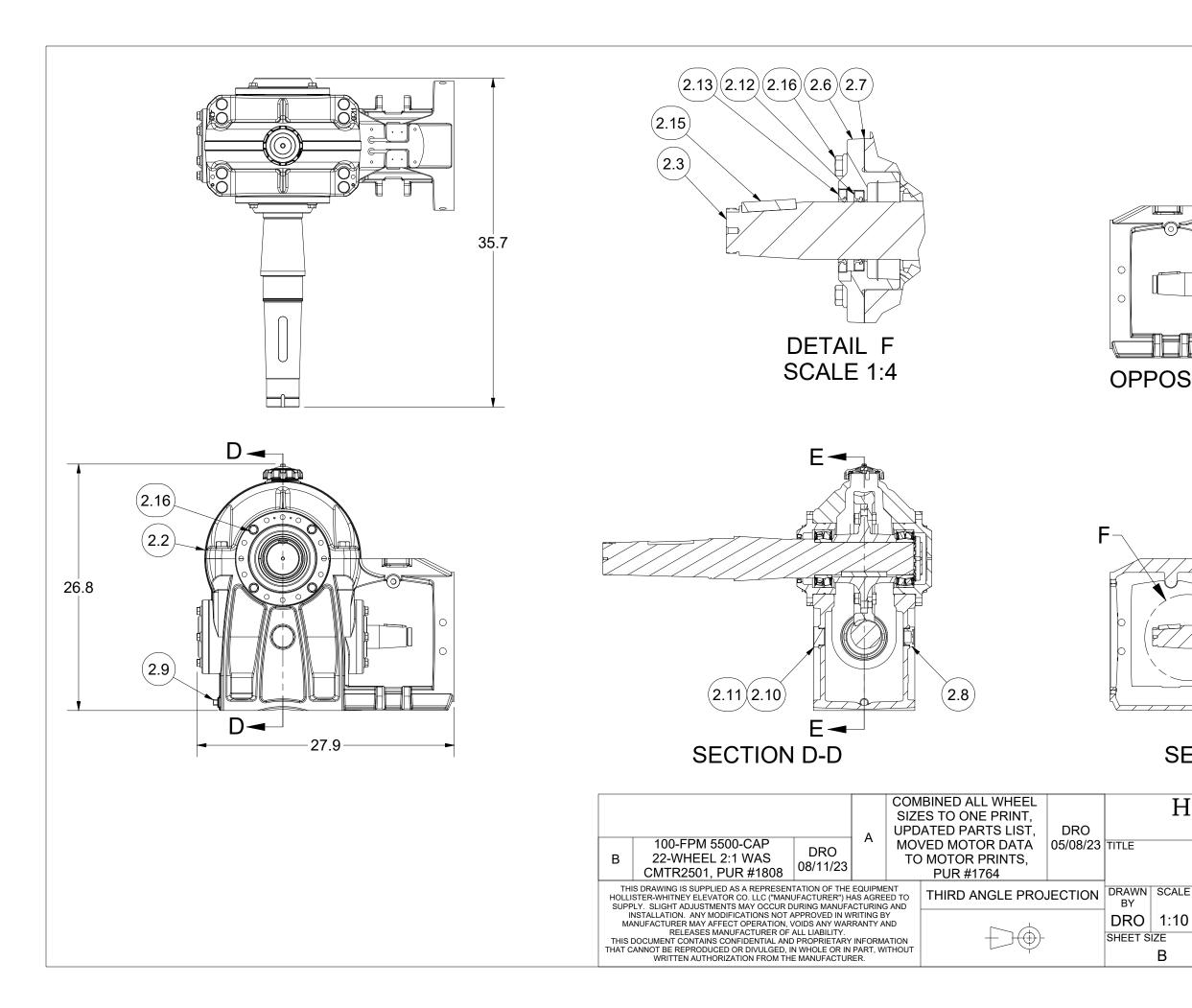

			EERING MASTER PARTS LIST				• - •	GT11-273 PARTS	
ITEM	QTY	PART NUMBER		ITEM	QTY	QTY	QTY		DESCRIPTION
1	1	GT11BS-273-01	ASSY, GEAR BOX, SINGLE LEAD, 49:1		GI11BS-273-01	GT11BS-273-02	GT11BS-273-03		
		GT11BS-273-02	ASSY, GEAR BOX, DOUBLE LEAD, 49:2	2.1	1	0	0	GT11BS-080-01	ASSY, CENTER, BS/OD, SINGLE LEAD
		GT11BS-273-03	ASSY, GEAR BOX, TRIPLE LEAD, 49:3	2.1	0	1	0	GT11BS-080-02	ASSY, CENTER, BS/OD, DOUBLE LEAD
2	1	GT11BS-001	BASE, BS/OD	2.1	0	0	1	GT11BS-080-03	ASSY, CENTER, BS/OD, TRIPLE LEAD
3	1	GT11BS-005	STAND, OUTBOARD, BS	2.2	1	1	1	GT11-284	ASSY, UPPER AND LOWER HOUSING, MACHINED
4	1	GT11BS-006	STAND, INBOARD, BS	2.3	1	0	0	GT11-294-01	ASSY, WORM SHAFT AND BEARING, 7/8" SINGLE
5	1	GT11-093	BEARING, ROLLER, SPHERICAL	2.3	0	1	0	GT11-294-02	ASSY, WORM SHAFT AND BEARING, 7/8" DOUBLE
6	0	GT11BS-250-22	ASSY, RETAINER, ROPE, BS, 22"	2.3	0	0	1	GT11-294-03	ASSY, WORM SHAFT AND BEARING, 7/8" TRIPLE
		GT11BS-250-26	ASSY, RETAINER, ROPE, BS, 26"	2.4	1	1	1	GT31-063	CAP, FILL, OIL
		GT11BS-250-30	ASSY, RETAINER, ROPE, BS, 30"	2.5	1	1	1	GT31-085	CAP, BEARING, REAR END
7	1	GT11-282	NUT, LOCK, SHAFT	2.6	1	1	1	GT31-085-FE	CAP, BEARING, FORWARD END
8	1	GT11-283		2.7	AS REQ'D	AS REQ'D	AS REQ'D	GT31-087	SHIM, CAP, BEARING
9	0	GT11-286-22	ASSY, TRACTION WHEEL AND HUB, 22"	2.8	1	1	1	GT31-276	GLASS, SIGHT, OIL
		GT11-286-26	ASSY, TRACTION WHEEL AND HUB, 26"	2.9	1	1	1	GT31-277	PLUG, DRAIN, OIL
4.0		GT11-286-30	ASSY,TRACTION WHEEL AND HUB, 30"	2.10	1	1	1	GT31-278	PLUG, OIL
10	2	GT11-315	ASSY, ARM, BRAKE	2.11	1	1	1	GT31-279	O-RING, PLUG, OIL
11	1	GT11-326	PLATE, RETENTION, BEARING, STAND	2.12	1	1	1	GT31-287	SEAL, SHAFT, RADIAL
12		GT11BS-368	RETAINING RING, SPIRAL, MEDIUM DUTY	2.13	1	1	1	GT31-287-1	SEAL, SHAFT, RADIAL
13	AS REQ'D	GT31-062-05	SHIM, STAND, OUTBOARD, 0.0050" THK	2.14	4	4	4	GT31-295	SHIM, ECCENTRIC, EDGE BONDED
		GT31-062-10	SHIM, STAND, OUTBOARD, 0.0100" THK	2.15	1	1	1	GT31-301	KEY, SHAFT, WORM
		GT31-062-31	SHIM, STAND, OUTBOARD, 0.0310" THK	2.16	20	20	20	1/2"-13 UNC X 1.5"	BOLT, HEX, SERRATED FLANGE, GRADE 5, ZINC-PLAT
14	1	GT31-093		-					
15	2	GT31-290	CONDUIT, METAL, FLEXIBLE, 3/8"	-					
16	2	GT31-291	ADAPTER, FMC, 90 DEG ELBOW, 3/8"	-					
17	2	GT31-293	ADAPTER, STRAIGHT, FMC, 3/8"	-					
18	1	GT31-297-1.625	COUPLER, MOTOR, 1.625", 254TC / 256TC FRAME						
		GT31-297-1.875	COUPLER, MOTOR, 1.875", 284TC / 286TC FRAME						
		GT31-297-2.125	COUPLER, MOTOR, 2.125", 324TC / 326TC FRAME						
10	4	GT31-297-2.375	COUPLER, MOTOR, 2.125", 364TC / 365TC FRAME	-					
19	1	GT31-298		-					
20	2	GT31-299	BUSHING, ANTI-SHORT, FEMALE, FMC, 3/8"	-		A CO	ک		
21 22	1	GT11-300 GT31-310	KEY, SHAFT, WHEEL NUT. LOCK. SHAFT	-	\sim				
22	1	GT31-310	WASHER, LOCK, SHAFT	-					
23	1	GT31-312	PLATE, ADAPTER, MOTOR, 254TC / 256TC / 284TC / 286TC FRAME	_				-6D	
24	•	GT31-313	PLATE, ADAPTER, MOTOR, 324TC / 326TC / 364TC / 365TC FRAME						
25	1	GT31-314	ASSY, SOLENOID, BRAKE						
26	2	GT31-321	PIN, PIVOT						
27	1	GT31-322	DRUM, BRAKE	-					
28	2	GT31-327	ASSY, SWITCH, BRAKE						
29	1	GT31-358	ASSY, BLOCK, TERMINAL	+					
30	1	P-208	MANUAL BRAKE RELEASE TAG			FUAL T.			
31	1	P-226	LABEL, DATA, ELECTRICAL, BRAKE	-					
32	1	P-227	LABEL, INSTRUCTION, BRAKE	-					
33	1	P-228	LABEL, WIRING, BRAKE	-	# 184 M h				
34	1	P-230	NAMEPLATE, SMALL, HOLLISTER-WHITNEY	-					
35	1	P-231	TAG, DATA, MOTOR, CONTRACT	-		P P			
36	1	P-236	MACHINE DATA TAG	-					
37	4	#6 - 32 UNC x 7/8"	SCREW, HEX HEAD	-	- KG SQ	P			
38	4	5/16" - 18 UNC x 3/4"	BOLT, HEX, SERRATED FLANGE, GRADE 5, ZINC-PLATED	-					
39	1	7/16" - 14 UNC x 2-1/4"	SCREW, HEX, CAP, SOCKET HEAD, BLACK OXIDE FINISH	-					
40	AS REO'D	1/2" - 13 UNC x 1-1/2"	BOLT, HEX, SERRATED FLANGE, GRADE 5, ZINC-PLATED	-		GT11	1BS-LH		GT11BS-273
41		1/2" - 13 UNC x 1-1/2"	SCREW, HEX, CAP, FLAT SOCKET HEAD, BLACK OXIDE FINISH	-			LE 1:10		SCALE 1:10
42	4	5/8" - MS 16624	RING, RETAINING, EXTERNAL, SERIES 3100	-		JUAL			OUALL 1.10
43	6	5/8" x 1-1/2"	PIN, DOWEL, GROUND, HARDENED	-					
. •	AS RFO'D	5/8" - 11 UNC x 1-1/2"	BOLT, HEX, SERRATED FLANGE, GRADE 5, ZINC-PLATED	-					
44		3/4"	LOCK WASHER, HELICAL SPRING, REGULAR	-					
44 45	12								
44 45 46	12 12	3/4" - 10 UNC x 2-1/2"	HEX CAP SCREW, GRADE 5, BLACK OXIDE FINISH	-					






			SIZE	IBINED ALL WHEEL ES TO ONE PRINT, ATED PARTS LIST,	DRO	HOLLISTER-WHITNEY ELEVATOR CO. LLC					
PM 5500-CAP HEEL 2:1 WAS 501, PUR #1808	M 5500-CAP EL 2:1 WAS 01, PUR #1808 PPLIED AS A REPRESENTATION OF THE EQUIPMENT		MO	VED MOTOR DATA MOTOR PRINTS, PUR #1764	05/08/23						
SUPPLIED AS A REPRESENTATION OF THE EQUIPMENT 'ELEVATOR CO. LLC ("MANUFACTURER") HAS AGREED JUSTMENTS MAY OCCUR DURING MANUFACTURING AI ANY MODIFICATIONS NOT APPROVED IN WRITING BY MAY AFFECT OPERATION. VOIDS ANY WARRANTY AND		ED TO S AND Y	THIRD ANGLE PRO	JECTION	DRAWN BY DRO	SCALE	MATERIAL SEE PARTS LI	ST	REFERENCE TOL. ALL DIMENSIONS REFERENCE UNLESS OTHERWISE SPECIFIED		
EASES MANUFACTURER OF DNTAINS CONFIDENTIAL AND PRODUCED OR DIVULGED, II I AUTHORIZATION FROM THI	ALL LIABILITY. PROPRIETARY N WHOLE OR IN	INFORM PART, W	ATION			SHEET S	^{IZE}	DATE 4/25/2023		GT11BS-LH SHEET 3 OF 10	




SECTION A-A SCALE 1:8

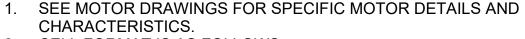
HOLLISTER-WHITNEY ELEVATOR CO. LLC

ASSY, GT11BS, LEFT HAND

	SCALE	MATERIAL	REFERENCE TOL.
	1:16	SEE PARTS LIS	ST ALL DIMENSIONS REFERENCE UNLESS OTHERWISE SPECIFIED
5	IZE	DATE	GT11BS-LH
	В	4/25/2023	SHEET 4 OF 10

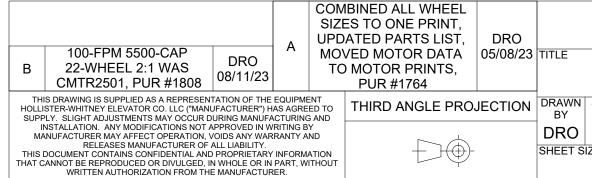
00550	(ft/main)	50	75	400		IOTOR CHAR			050	000	050	400	450	500
SPEED	(ft/min)	50	75	100	125	150	175	200	250	300	350	400	450	500
CAP (lbs)	SHEAVE SIZE (in)													
		49:1	49:1	49:1	49:1	49:1	49:1	49:2	49:2	49:2	49:2	49:3	49:3	49:3
1000	22	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1505	CMTR1505	CMTR1001	CMTR2001	CMTR3005	CMTR3005	CMTR2001	CMTR3005	CMTR3
		N/A	N/A	IG1MTR1030	IG1MTR1031	IG1MTR1514	N/A	IG1MTR1030	IG1MTR1031	IG1MTR1514	IG1MTR3515	IG3MTR2013	IG3MTR3014	IG1MTR
		49:1	49:1	49:1	49:1	49:1	49:1	49:2	49:2	49:2	49:2	49:3	49:3	49:3
1000	26	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR2501	CMTR2501	CMTR2
		N/A	N/A	IG1MTR1729	IG1MTR1030	IG1MTR1031	N/A	IG1MTR1729	IG1MTR1030	IG3MTR2013	IG1MTR1514	IG1MTR2504	IG3MTR2013	IG3MTR
		49:1	49:1	49:1	49:1	49:1	49:1	49:1	49:2	49:2	49:2	49:2	49:2	49:2
1000	30	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR3005	CMTR3
		N/A	N/A	IG1MTR1729	IG1MTR1030	IG1MTR1031	N/A	IG1MTR1514	IG1MTR1030	IG1MTR2504	IG3MTR2013	IG3MTR3014	IG1MTR3515	IG1MTR
		49:1	49:1	49:1	49:1	49:1	49:1	49:2	49:2	49:2	49:2	49:3	49:3	49:3
1500	22	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1505	CMTR1505	CMTR2001	CMTR2001	CMTR3005	CMTR3005	CMTR2501	CMTR4005	CMTR4
		N/A	N/A	IG1MTR1030	IG1MTR1031	IG1MTR1514	N/A	IG1MTR1030	IG3MTR2013	IG1MTR1514	IG1MTR3515	IG3MTR3013	IG3MTR3014	IG1MTR
		49:1	49:1	49:1	49:1	49:1	49:1	49:2	49:2	49:2	49:2	49:3	49:3	49:3
1500	26	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR3001	CMTR3001	CMTR3
		N/A	N/A	IG1MTR1729	IG1MTR1030	IG1MTR1031	N/A	IG1MTR1729	IG3MTR2030	IG3MTR2013	IG3MTR3014	IG1MTR2504	IG3MTR3013	IG3MTR
		49:1	49:1	49:1	49:1	49:1	49:1	49:1	49:2	49:2	49:2	49:2	49:2	49:2
1500	30	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR2001	CMTR4005	CMTR4005	CMTR4
		N/A	N/A	IG1MTR1729	IG1MTR1030	IG1MTR1031	N/A	IG1MTR1514	IG3MTR2030	IG1MTR2504	IG3MTR2013	IG3MTR3014	IG1MTR3515	IG1MTR
		49:1	49:1	49:1	49:1	49:1	49:1	49:2	49:2	49:2	49:2	49:3	49:3	49:3
2000	22	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1505	CMTR1505	CMTR2001	CMTR2001	CMTR3005	CMTR3005	CMTR3001	CMTR4005	CMTR4
		N/A	N/A	IG1MTR1030	IG1MTR1031	IG1MTR1514	N/A	IG3MTR2030	IG3MTR2013	IG3MTR3014	IG1MTR3515	IG3MTR3013	IG3MTR3014	IG1MTF
		49:1	49:1	49:1	49:1	49:1	49:1	49:2	49:2	49:2	49:2	49:3	49:3	49:3
2000	26	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR2001	CMTR3005	CMTR2001	CMTR2501	CMTR2501	CMTR4005	CMTR5001	CMTR5001	CMTR
2000	20	N/A	N/A	IG1MTR1729	IG1MTR1030	IG1MTR1031	N/A	IG1MTR1729	IG3MTR2030	IG3MTR2013	IG3MTR3014	IG1MTR2504	IG3MTR3013	IG3MTR
		49:1	49:1	49:1	49:1	49:1	49:1	49:1	49:2	49:2	49:2	49:2	49:2	49:2
2000	30	CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR2501	CMTR2501	CMTR2501	CMTR4005	CMTR4005	CMTR4
2000	00	N/A	N/A		IG1MTR1030		N/A	IG1MTR1514		IG1MTR2504			IG1MTR3515	
		49:1	49:1	49:1	49:1	49:1	49:1	49:2	49:2	49:2	49:2	103101110014	10110110313	
2500	22	CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR3005		CMTR2001	CMTR2501	CMTR4005	CMTR4005	GT31	GT31	GT3
2300	22	N/A	N/A	IG1MTR1030	IG1MTR1031	IG1MTR1514	N/A	IG3MTR2030	IG3MTR2013	IG3MTR3014	IG1MTR3515	GIST	GIST	GIU
		49:1	49:1	49:1	49:1	49:1	49:1	49:2	49:2	49:2	49:2			
2500	26	49.1 CMTR2001	CMTR2001	49.1 CMTR2001	49.1 CMTR2001	49.1 CMTR2001	49.1 CMTR3005	49.2 CMTR2501	49.2 CMTR2501	49.2 CMTR2501	49.2 CMTR4005	0724	0724	
2000	20										IG3MTR3014	GT31	GT31	GT3
		N/A	N/A	IG1MTR1729	IG1MTR1030	IG3MTR2013	N/A	IG1MTR1729	IG3MTR2030	IG3MTR3013				
2500	20	49:1	49:1	49:1	49:1	49:1	49:1	49:1	49:2	49:2	49:2	OT 24	OT 24	
2500	30	CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR3001	CMTR3001	CMTR3001	GT31	GT31	GT
		N/A	N/A	IG1MTR1729	IG1MTR1030	IG1MTR2504	N/A	IG3MTR3014	IG3MTR2030	IG1MTR2504	IG3MTR3013			

1. SEE MOTOR DRAWINGS FOR SPECIFIC MOTOR DETAILS AND CHARACTERISTICS.


2. CELL FORMAT IS AS FOLLOWS:

GEAR RATIO ABB OR WEG MOTOR 49:X 🗡 PART NUMBER IMPERIAL MOTOR **▲**CMTRXXXX PART NUMBER IGXMTRXXXX 🗡

			Α	SIZI UPD	IBINED ALL WHEEL ES TO ONE PRINT, DATED PARTS LIST,	DRO		HO	OLLISTER-V ELEVATOR C		
В	100-FPM 5500-CAP 22-WHEEL 2:1 WAS CMTR2501, PUR #1808	DRO 08/11/23			VED MOTOR DATA D MOTOR PRINTS, PUR #1764	05/08/23	ASSY, GT11BS, LEFT HAND				
HOL	ANUFACTURER MAY AFFECT OPERATION, \	UFACTURER") H. URING MANUFA APPROVED IN W /OIDS ANY WAR	AS AGREE CTURING RITING BY	ED TO AND (JECTION	DRAWN BY DRO	SCALE	SEE PARTS LIS	ST	REFERENCE TOL. ALL DIMENSIONS REFERENCE UNLESS OTHERWISE SPECIFIED
	DOCUMENT CONTAINS CONFIDENTIAL AND CANNOT BE REPRODUCED OR DIVULGED, II	SLIGHT ADJOSTMENTS MAY OCCOR DURING WANDACTORING FALLATION. ANY MODIFICATIONS NOT APPROVED IN WRITING B JFACTURER MAY AFFECT OPERATION, VOIDS ANY WARRANTY A RELEASES MANUFACTURER OF ALL LIABILITY. CUMENT CONTAINS CONFIDENTIAL AND PROPRIETARY INFORM. NOT BE REPRODUCED OR DIVULGED, IN WHOLE OR IN PART, WI WRITTEN AUTHORIZATION FROM THE MANUFACTURER.					SHEET SI	B	date 4/25/2023		GT11BS-LH SHEET 6 OF 10


					Ν	10TOR CHAR	T 1:1 ROPIN	IG						
SPEED	(ft/min)	50	75	100	125	150	175	200	250	300	350	400	450	500
CAP (lbs)	SHEAVE SIZE (in)													
		49:1	49:1	49:1	49:1	49:1	49:1	49:2						
3000	22	CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR3005	CMTR2501	GT31	GT31	GT31	GT31	GT31	GT31
		N/A	N/A	IG1MTR1030	IG3MTR2013	IG1MTR1514	N/A	IG3MTR2030						
		49:1	49:1	49:1	49:1	49:1	49:1	49:2						
3000	26	CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR3001	GT31	GT31	GT31	GT31	GT31	GT31
		N/A	N/A	IG1MTR1729	IG3MTR2030	IG3MTR2013	N/A	IG1MTR1729						
		49:1	49:1	49:1	49:1	49:1	49:1	49:1						
3000	30	CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR3005	GT31	GT31	GT31	GT31	GT31	GT31
		N/A	N/A	IG1MTR1729	IG3MTR2030	IG1MTR2504	N/A	IG3MTR3014						

2. CELL FORMAT IS AS FOLLOWS:

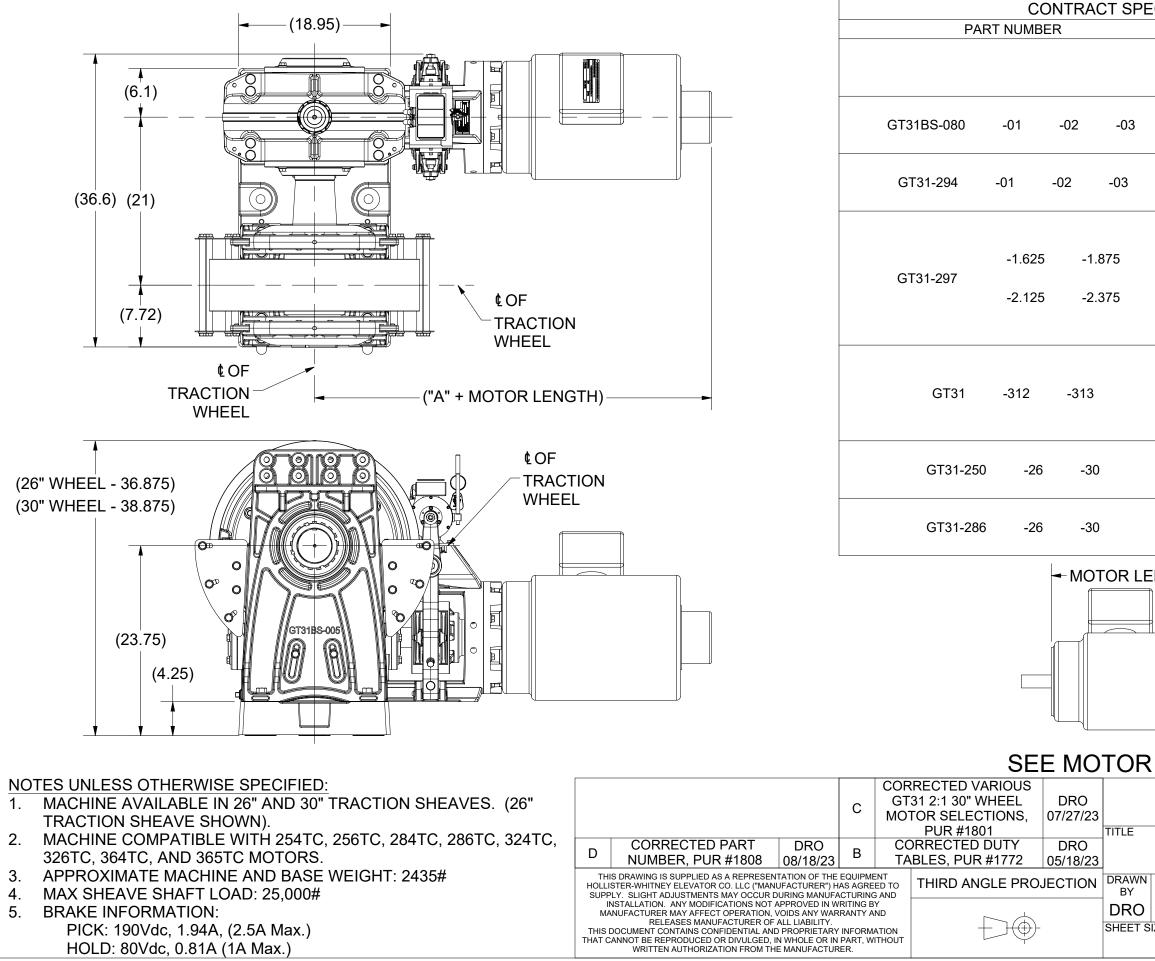
ABB OR WEG MOTOR PART NUMBER GEAR RATIO 49:X GEAR RATIO IMPERIAL MOTOR PART NUMBER IGXMTRXXXX

HOLLISTER-WHITNEY ELEVATOR CO. LLC

ASSY, GT11BS, LEFT HAND

	SCALE	MATERIAL	REFERENCE TOL.
		SEE PARTS LIS	ST ALL DIMENSIONS REFERENCE UNLESS OTHERWISE SPECIFIED
5	IZE	DATE	GT11BS-LH
В		4/25/2023	SHEET 7 OF 10

SPEED CAP (lbs)		1	1	1	CHART 2:1	1	1	1			
CAP (lbs)	(ft/min)	50	75	100	125	150	175	200	225	250	
	SHEAVE SIZE (in)										
		49:1	49:1	49:2	49:2	49:2	49:2	49:3	49:3	49:3	
1000	22	CMTR1001	CMTR1505	CMTR1001	CMTR1001	CMTR1505	CMTR1505	CMTR1001	CMTR1505	CMTR1505	
		IG1MTR1030	N/A	IG1MTR1030	IG1MTR1031	IG1MTR1514	N/A	IG1MTR1514	N/A	IG1MTR3515	
		49:1	49:1	49:2	49:2	49:2	49:2	49:3	49:3	49:3	
1000	26	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1505	CMTR1001	CMTR1001	CMTR1001	
		IG1MTR1729	N/A	IG1MTR1729	IG1MTR1030	IG1MTR1031	N/A	IG1MTR1031	N/A	IG1MTR1514	
		49:1	49:1	49:1	49:2	49:2	49:2	49:2	49:2	49:2	
1000	30	CMTR1001	CMTR1001	CMTR1505	CMTR1001	CMTR1001	CMTR1001	CMTR1505	CMTR1505	CMTR1505	
		IG1MTR1729	N/A	IG1MTR1514	IG1MTR1030	IG1MTR1031	N/A	IG1MTR1514	N/A	IG1MTR3515	
		49:1	49:1	49:2	49:2	49:2	49:2	49:3	49:3	49:3	
1500	22	CMTR1001	CMTR1505	CMTR1001	CMTR1001	CMTR1505	CMTR1505	CMTR1001	CMTR3005	CMTR3005	
		IG1MTR1030	N/A	IG1MTR1030	IG1MTR1031	IG1MTR1514	N/A	IG1MTR1514	N/A	IG1MTR3515	
		49:1	49:1	49:2	49:2	49:2	49:2	49:3	49:3	49:3	
1500	26	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1505	CMTR2001	CMTR2001		
		IG1MTR1729	N/A	IG1MTR1729	IG1MTR1030	IG1MTR1031	N/A	IG1MTR1031	N/A	IG3MTR2013	
		49:1	49:1	49:1	49:2	49:2	49:2	49:2	49:2	49:2	
1500	1500 30	CMTR1001	CMTR1001	CMTR1505	CMTR1001	CMTR1001	CMTR1001	CMTR1505	CMTR1505	CMTR1505	
		IG1MTR1729	N/A	IG1MTR1514	IG1MTR1030	IG1MTR1031	N/A	IG1MTR1514	N/A	IG1MTR3515	
		49:1	49:1	49:2	49:2	49:2	49:2	49:3	49:3	49:3	
2000	22	CMTR1001	CMTR1505	CMTR1001	CMTR1001	CMTR1505	CMTR1505	CMTR2001	CMTR3005	CMTR3005	
		IG1MTR1030	N/A	IG1MTR1030	IG1MTR1031	IG1MTR1514	N/A	IG1MTR1514	N/A	IG1MTR3515	
		49:1	49:1	49:2	49:2	49:2	49:2	49:3	49:3	49:3	
2000	26	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR2001	
		IG1MTR1729	N/A	IG1MTR1729	IG1MTR1030	IG1MTR1031	N/A	IG1MTR2504	N/A	IG3MTR2013	
		49:1	49:1	49:1	49:2	49:2	49:2	49:2	49:2	49:2	
2000	30	CMTR1001	CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR3005		
		IG1MTR1729	N/A	IG1MTR1514	IG1MTR1030	IG1MTR1031	N/A	IG1MTR1514	N/A	IG1MTR3515	
		49:1	49:1	49:2	49:2	49:2	49:2	49:3	49:3	49:3	
2500	22	CMTR1001	CMTR1505	CMTR1001	CMTR1001	CMTR3005	CMTR3005	CMTR2001	CMTR3005	CMTR3005	
		IG1MTR1030	N/A	IG1MTR1030	IG1MTR1031	IG1MTR1514	N/A	IG3MTR2013	N/A	IG1MTR3515	
		49:1	49:1	49:2	49:2	49:2	49:2	49:3	49:3	49:3	
2500	26	CMTR1001	CMTR1001	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR2001	CMTR2001	CMTR2001	
		IG1MTR1729	N/A	IG1MTR1729	IG1MTR1030	IG3MTR2013	N/A	IG1MTR2504	N/A	IG3MTR2013	
		49:1	49:1	49:1	49:2	49:2	49:2	49:2	49:2	49:2	
		-	10.1		49.2	40.2	43.2	43.2	49.2	49.2	
2500	30	CMTR1001	CMTR1001	CMTR1505	49.2 CMTR2001	CMTR2001	CMTR2001	CMTR3005	49.2 CMTR3005		


	ASSY, GT11BS, LEFT HAND										
1	DRAWN BY	SCALE	MAT	ERIAL		REFERENCE TOL.					
	DRO			SEE PARTS LIS	ALL DIMENSIONS REFERENCE UNLESS OTHERWISE SPECIFIED						
	SHEET SIZE			DATE		GT11BS-LH					
	B			4/25/2023		SHEET 8 OF 10					

				1	CHART 2:1	ROPING		1			
SPEED	(ft/min)	50	75	100	125	150	175	200	225	250	
CAP (lbs)	SHEAVE										
CAP (IDS)	SIZE (in)										
		49:1	49:1	49:2	49:2	49:2	49:2	49:3	49:3	49:3	
3000	22	CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR3005	CMTR3005	CMTR2001	CMTR3005	CMTR3005	
		IG1MTR1030	N/A	IG1MTR1030	IG1MTR1031	IG1MTR1514	N/A	IG3MTR2013	N/A	IG1MTR3515	
		49:1	49:1	49:2	49:2	49:2	49:2	49:3	49:3	49:3	
3000	26	CMTR1001	CMTR1001	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR2501	CMTR2501		
0000	20	IG1MTR1729	N/A		IG1MTR1030	IG3MTR2013	N/A	IG1MTR2504	N/A	IG3MTR3013	
		49:1	49:1	49:1	49:2	49:2	49:2	49:2	49:2	49:2	
3000	30	CMTR1001	CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR3005		
3000	50	IG1MTR1729	N/A		IG1MTR1030	IG1MTR2504	N/A	IG3MTR3014	N/A	IG1MTR3515	
2500		49:1	49:1	49:2	49:2	49:2	49:2	49:3	49:3	49:3	
3500	22	CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR3005	CMTR3005	CMTR2001	CMTR4005		
		IG1MTR1030	N/A		IG3MTR2013	IG1MTR1514	N/A	IG3MTR2013	N/A	IG1MTR3515	
		49:1	49:1	49:2	49:2	49:2	49:2	49:3	49:3	49:3	
3500	26	CMTR1001	CMTR1001	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR2501	CMTR2501		
		IG1MTR1729	N/A		IG3MTR2030	IG3MTR2013	N/A	IG1MTR2504	N/A	IG3MTR3013	
		49:1	49:1	49:1	49:2	49:2	49:2	49:2	49:2	49:2	
3500	30	CMTR1001	CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR3005	CMTR3005	
		IG1MTR1729	N/A	IG1MTR1514	IG3MTR2030	IG1MTR2504	N/A	IG3MTR3014	N/A	IG1MTR3515	
		49:1	49:1	49:2	49:2	49:2	49:2	49:3	49:3	49:3	
4000	22	CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR3005	CMTR3005	CMTR2501	CMTR4005	CMTR4005	
		IG1MTR1030	N/A	IG3MTR2030	IG3MTR2013	IG3MTR3014	N/A	IG3MTR3013	N/A	IG1MTR3515	
		49:1	49:1	49:2	49:2	49:2	49:2	49:3	49:3	49:3	
4000	00 26	CMTR1001	CMTR1001	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR3001	CMTR3001		
1000		IG1MTR1729	N/A	IG1MTR1729		IG3MTR2013	N/A	IG1MTR2504	N/A	IG3MTR3013	
		49:1	49:1	49:1	49:2	49:2	49:2	49:2	49:2	49:2	
4000	30	CMTR2001	CMTR2001	CMTR3005	49.2 CMTR2001	CMTR2501	49.2 CMTR2501	49.2 CMTR4005	CMTR4005		
4000					IG3MTR2030						
		IG1MTR1729	N/A				N/A	IG3MTR3014	N/A	IG1MTR3515	
		49:1	49:1	49:2	49:2	49:2	0- 0 (0-04	0- 0 (
4500	22	CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR3005	GT31	GT31	GT31	GT31	
		IG1MTR1030	N/A		IG3MTR2013	IG3MTR3014					
		49:1	49:1	49:2	49:2	49:2					
4500	26	CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR2001	GT31	GT31	GT31	GT31	
		IG1MTR1729	N/A	IG1MTR1729	IG3MTR2030	IG3MTR2013					
		49:1	49:1	49:1	49:2	49:2					
4500	30	CMTR2001	CMTR2001	CMTR3005	CMTR2501	CMTR2501	GT31	GT31	GT31	GT31	
		IG1MTR1729	N/A	IG1MTR1514	IG3MTR2030	IG1MTR2504					
		IG1MTR1729	N/A				GT31	GT31		GT31	HEEL
		ERWISE SPE								SIZES TO ONE PF	
		AWINGS FOR	SPECIFIC		AILS AND		100-FPM 5500			JPDATED PARTS MOVED MOTOR E	
			10.				22-WHEEL 2:1			TO MOTOR PRIN	
2. CELL	FURMATIS	S AS FOLLOW	/5:				MTR2501, PU		1/23	PUR #1764	,
				AR RATIO		THIS DR/	AWING IS SUPPLIED A	S A REPRESENTATION C			
	EG MOTOR	-\ IO	./			SUPPLY. S	LIGHT ADJUSTMENTS	CO. LLC ("MANUFACTUR MAY OCCUR DURING M	ANUFACTURING AN		E PROJECTIO
PAF	RT NUMBER			IMPERIAL I	MOTOR		ACTURER MAY AFFEC	CATIONS NOT APPROVE T OPERATION, VOIDS AN	Y WARRANTY AND	~	4
		▲ CMTR	λλλλ 🦯	PART NUM	IBER		RELEASES MANU	FACTURER OF ALL LIABI	LITY.		
			RXXXX 🗡 👘					IFIDENTIAL AND PROPRI OR DIVULGED, IN WHOLE			$\Box(\Psi)$

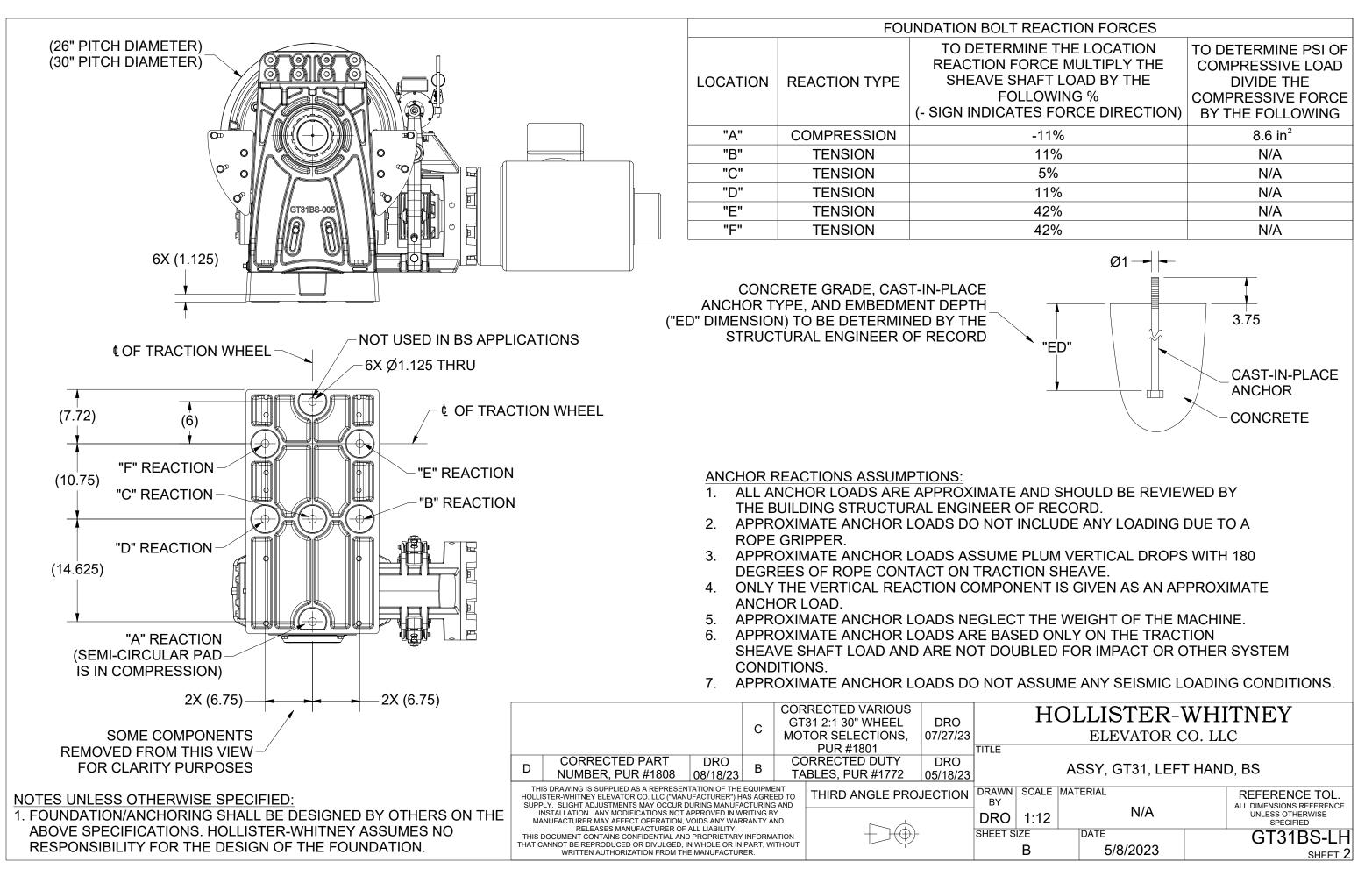
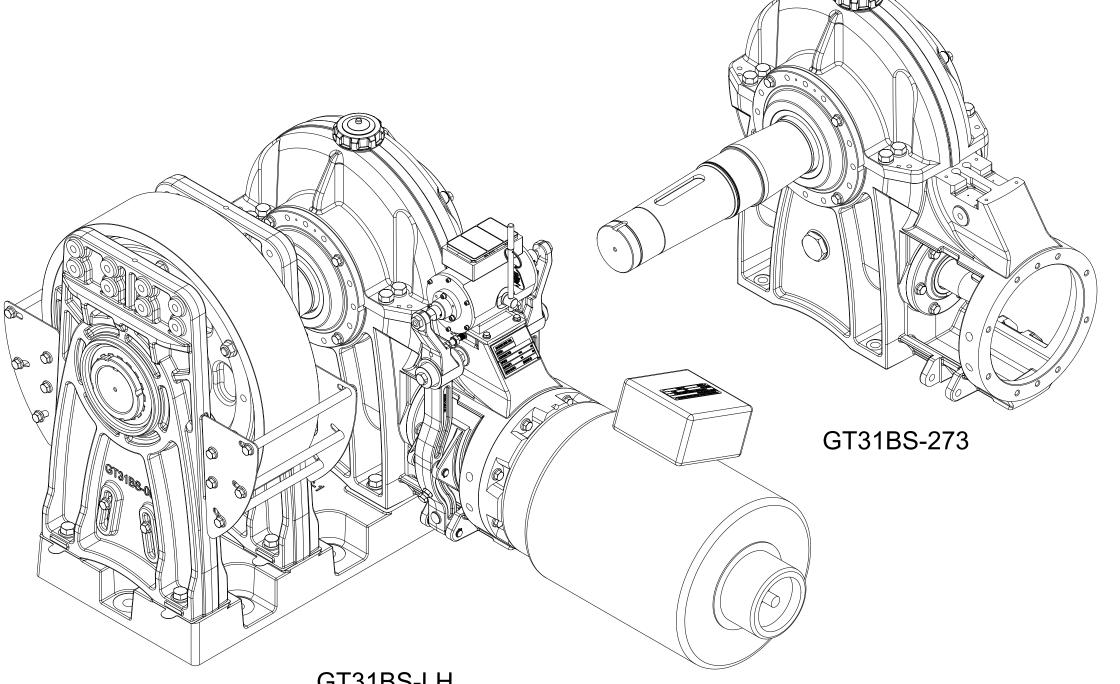
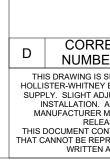

ASSY, GT11BS, LEFT HAND										
DRAWN BY	SCALE	MAT	ERIAL	REFERENCE TOL.						
DRO			SEE PARTS LIS	ST	ALL DIMENSIONS REFERENCE UNLESS OTHERWISE SPECIFIED					
SHEET SIZE			DATE		GT11BS-LH					
B			4/25/2023		SHEET 9 OF 10					

					CHART 2:1							
SPEED	(ft/min)	50	75	100	125	150	175	200	225	250		
CAP (lbs)	SHEAVE SIZE (in)											
5000	22	49:1 CMTR1001 IG1MTR1030	49:1 CMTR1505 N/A	49:2 CMTR2001 IG3MTR2030	49:2 CMTR2001 IG3MTR2013	49:2 CMTR3005 IG3MTR3014	GT31	GT31	GT31	GT31		
5000	26	49:1 CMTR2001 IG1MTR1729	49:1 CMTR2001 N/A	49:2 CMTR2501 IG1MTR1729	49:2 CMTR2501 IG3MTR2030	49:2 CMTR2501 IG3MTR2013	GT31	GT31	GT31	GT31		
5000	30	49:1 CMTR2001 IG1MTR1729	49:1 CMTR2001 N/A	49:1 CMTR3005 IG1MTR1514	49:2 CMTR2501 IG3MTR2030	49:2 CMTR3001 IG1MTR2504	GT31	GT31	GT31	GT31		
5500	22	49:1 CMTR2001 IG1MTR1030	49:1 CMTR3005 N/A	49:2 CMTR2001 IG3MTR2030	GT31	GT31	GT31	GT31	GT31	GT31		
5500	26	49:1 CMTR2001 IG1MTR1729	49:1 CMTR2001 N/A	49:2 CMTR2501 IG1MTR1729	GT31	GT31	GT31	GT31	GT31	GT31		
5500	30	49:1 CMTR2001 IG1MTR1729	49:1 CMTR2001 N/A	49:1 CMTR3005 IG3MTR3014	GT31	GT31	GT31	GT31	GT31	GT31		
6000	22	49:1 CMTR2001 IG1MTR1030	49:1 CMTR3005 N/A	49:2 CMTR2501 IG3MTR2030	GT31	GT31	GT31	GT31	GT31	GT31		
6000	26	49:1 CMTR2001 IG1MTR1729	49:1 CMTR2001 N/A	49:2 CMTR3001 IG1MTR1729	GT31	GT31	GT31	GT31	GT31	GT31		
6000	30	49:1 CMTR2001 IG1MTR1729	49:1 CMTR2001 N/A	49:1 CMTR3005 IG3MTR3014	GT31	GT31	GT31	GT31	GT31	GT31		
1. SEE N CHAR	AOTOR DRA ACTERISTI	ERWISE SPE AWINGS FOF CS. S AS FOLLOV	R SPECIFIC	MOTOR DET	TAILS AND	В 2	100-FPM 5500 22-WHEEL 2:1 MTR2501, PUI	WAS D	A UI	DMBINED ALL WH IZES TO ONE PRI PDATED PARTS L IOVED MOTOR D/ TO MOTOR PRIN PUR #1764	INT, IST, DRO ATA 05/08/23	דוד ג
	EG MOTOR	49 CMTR):X 🖌	AR RATIO _IMPERIAL _PART NUM		THIS DRA HOLLISTER SUPPLY. S INSTAL MANUFA THIS DOCU	WING IS SUPPLIED AS WHITNEY ELEVATOR LIGHT ADJUSTMENTS LATION. ANY MODIFIC CTURER MAY AFFECT RELEASES MANU	S A REPRESENTATION CO. LLC ("MANUFACTI MAY OCCUR DURING CATIONS NOT APPRO" OPERATION, VOIDS " FACTURER OF ALL LIA FIDENTIAL AND PROP	ANY WARRANTY AND ABILITY. PRIETARY INFORMATION			DR D SH

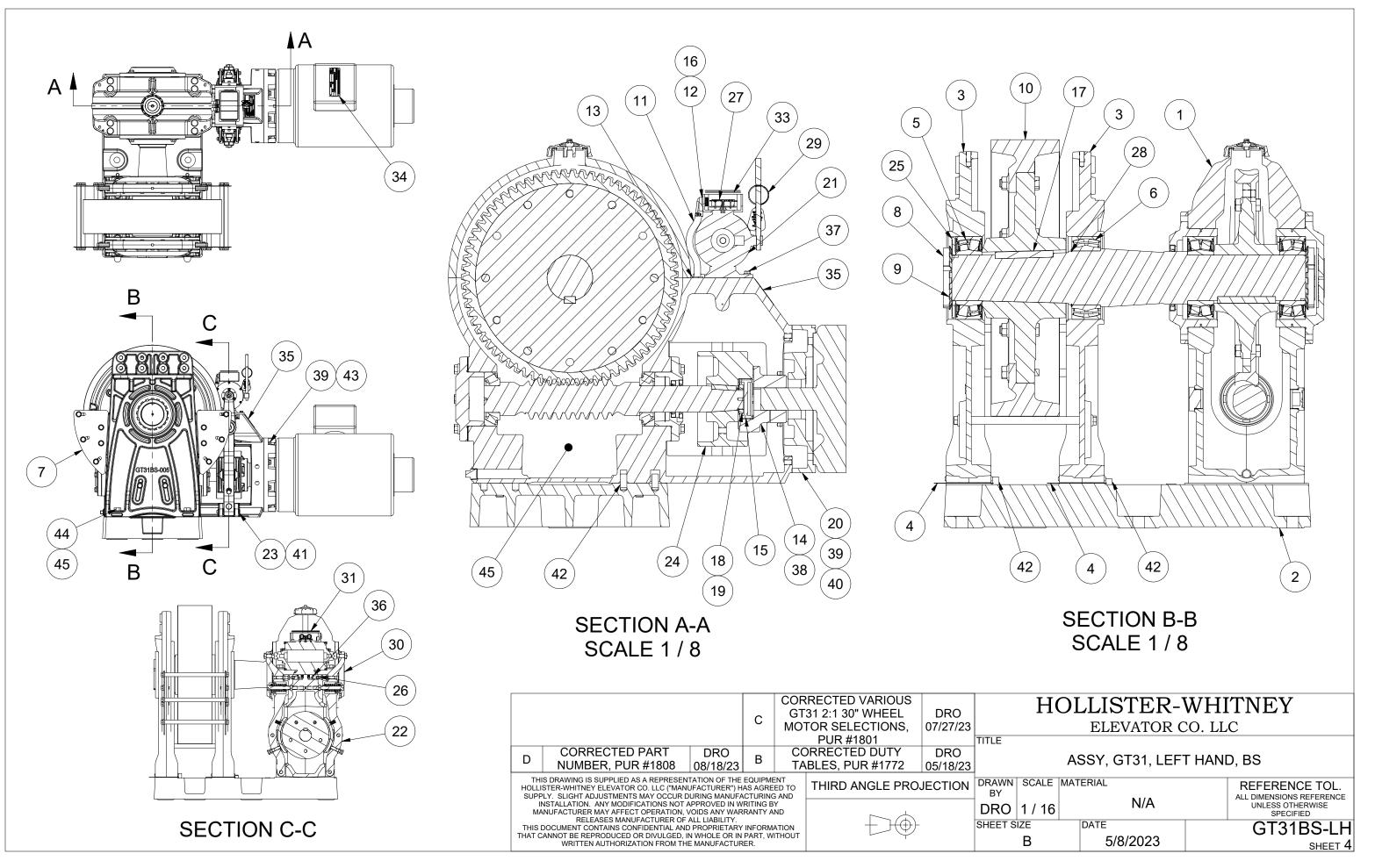
ASSY, GT11BS, LEFT HAND										
DRAWN	SCALE	MAT	ERIAL	REFERENCE TOL.						
_{вү} DRO			SEE PARTS LIS	ST	ALL DIMENSIONS REFERENCE UNLESS OTHERWISE SPECIFIED					
SHEET SIZE			DATE		GT11BS-LH					
В			4/25/2023		SHEET 10 OF 10					

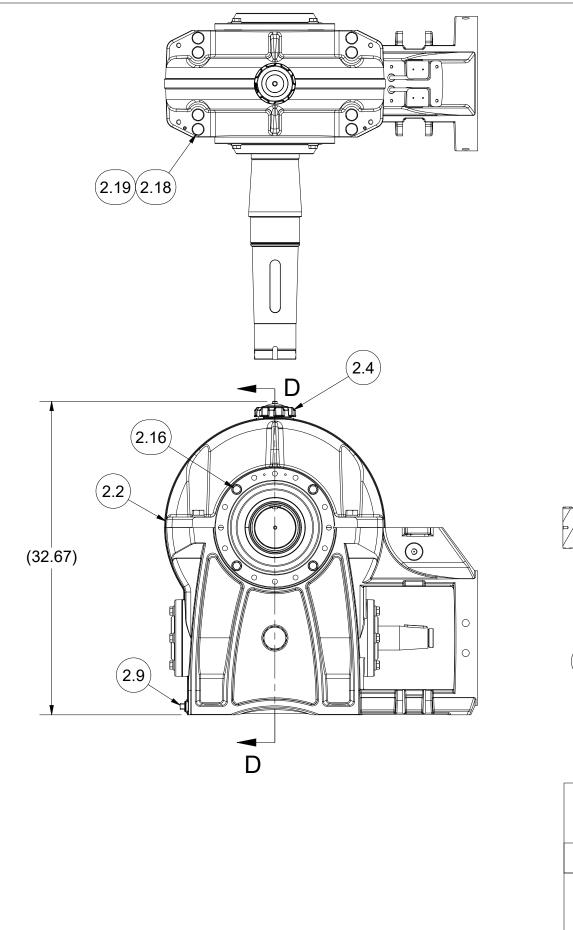

ECIFI	C PARTS LIST	ITEMS								
		DES	CRIPTIC	ON						
	МОТО	R, C-FLA	NGE - I	REFERE	NCE					
	-01 =	ASSY 71:1, -02	′, CENT 2 = 71:2		1:3					
		8Y, WOR 71:1, -02								
	-1.875 = -2.125 =	1.625", 2 1.875", 2 2.125", 3	PLER, MOTOR 254TC / 256TC FRAME 284TC / 286TC FRAME 324TC / 326TC FRAME 364TC / 365TC FRAME							
	PLATE, ADAPTER, MOTOR -312 = 254TC / 256TC / 284TC / 286TC FRAME -313 = 324TC / 326TC / 364TC / 365TC FRAME									
	ASSY, RETAINER, ROPE -26 = 26", -30 = 30"									
	ASSY,1	FRACTIC -26 = 2	N WHE 6", -30 =		HUB					
ENGT	H►									
			"Δ" Γ		SION					
		FR			INCHES					
			TC / 25		21.395					
			C / 23		21.635					
		324	TC /32	6TC	23.125					
	RINT IOLLIST		C / 36		CY					
-	ELEVA									
	ASSY, GT3									
I SCALI	EMATERIAL			REEE						
1:12	2 N	ALL DIM			ERENCE TOL. ENSIONS REFERENCE ESS OTHERWISE SPECIFIED					
size B	DATE 5/8/20)23		G	T31BS-LH SHEET 1					

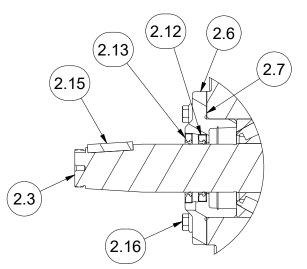


Page 34

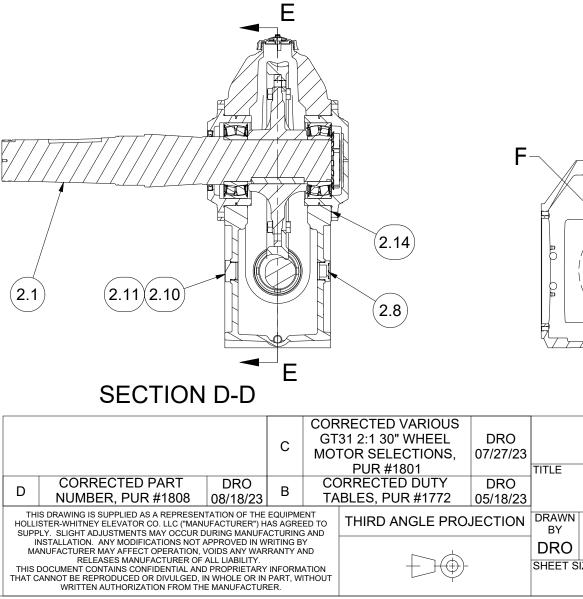
ITEM	QTY	PART NUMBER	INEERING MASTER PARTS LIST DESCRIPTION	
1 <u>- 1</u>	1	GT31BS-273-01	ASSY, GEAR BOX, SINGLE LEAD, 71:1	ITI
I	I	GT31BS-273-02	ASSY, GEAR BOX, DOUBLE LEAD, 71:1	2
		GT31BS-273-02		2
2	1		ASSY, GEAR BOX, TRIPLE LEAD, 71:3	2
	1	GT31BS-001	BASE, BS/OD	2
3	2	GT31BS-005	STAND, OUTBOARD, BS	2
4	AS REQ'D	GT31-062-05	SHIM, STAND, OUTBOARD, 0.005" THICK	
		GT31-062-01	SHIM, STAND, OUTBOARD, 0.010' THICK	2
		GT31-062-31	SHIM, STAND, OUTBOARD, 0.031" THICK	2
5	1	GT31-093	BEARING, ROLLER, SPHERICAL	2
6	1	GT31-094	BEARING, ROLLER, SPHERICAL	2
7	1	GT31BS-250-26	ASSY, RETAINER, ROPE, BS, 26"	2
		GT31BS-250-30	ASSY, RETAINER, ROPE, BS, 30"	2
8	1	GT31-282	NUT, LOCK, SHAFT	2
9	1	GT31-283	WASHER, LOCK, SHAFT	2
10	1	GT31-286-26	ASSY, TRACTION WHEEL AND HUB, 26"	2
		GT31-286-30	ASSY, TRACTION WHEEL AND HUB, 30"	2
11	2	GT31-290	CONDUIT, METAL, FLEXIBLE, 3/8"	2
12	2	GT31-291	ADAPTER, FMC, 90 DEG ELBOW, 3/8"	2
13	2	GT31-293	ADAPTER, STRAIGHT, FMC, 3/8"	2
14	1	GT31-297-1.625	COUPLER, MOTOR, 1.625", 254TC / 256TC FRAME	2
		GT31-297-1.875	COUPLER, MOTOR, 1.875", 284TC / 286TC FRAME	2
		GT31-297-2.125	COUPLER, MOTOR, 2.125", 324TC / 326TC FRAME	
		GT31-297-2.375	COUPLER, MOTOR, 2.375", 364TC / 365TC FRAME	
15	1	GT31-298	ELEMENT, COUPLING	
16	2	GT31-299	BUSHING, ANTI-SHORT, FEMALE, FMC, 3/8"	
17	1	GT31-300	KEY, SHAFT, WHEEL	
18	1	GT31-310	NUT, LOCK, SHAFT	
19	1	GT31-311	WASHER, LOCK, SHAFT	
20	1	GT31-312	PLATE, ADAPTER, MOTOR, 254TC / 256TC / 284TC / 286TC FRAME	
20	I	GT31-313	PLATE, ADAPTER, MOTOR, 234TC / 236TC / 264TC / 266TC FRAME	
21	1	GT31-314		
			ASSY, SOLENOID, BRAKE	
22	2	GT31-315		
23	2	GT31-321		
24	1	GT31-322	DRUM, BRAKE	
25	1	GT31-326	PLATE, RETENTION, BEARING, STAND	
26	2	GT31-327	ASSY, SWITCH, BRAKE	
27	1	GT31-358	ASSY, BLOCK, TERMINAL	
28	1	GT31BS-368	RETAINING RING, SPIRAL, MEDIUM DUTY	
29		P-208	MANUAL BRAKE RELEASE TAG	
30	1	P-223-R		~ /
31	1	P-226	LABEL, DATA, ELECTRICAL, BRAKE	S)
32	1	P-227	LABEL, INSTRUCTION, BRAKE	
33	1	P-228	LABEL, WIRING, BRAKE	
34	1	P-231	TAG, DATA, MOTOR, CONTRACT	And a start
35	1	P-236	MACHINE DATA TAG	\setminus
36	4	#6-32 UNC X 7/8"	SCREW, HEX HEAD	
37	4	5/16"-18 UNC X 3/4"	BOLT, HEX, SERRATED FLANGE, GRADE 5, ZINC-PLATED	
38	1	7/16" - 14 UNC X 2-1/4"	SCREW, HEX, CAP, SOCKET HEAD, BLACK OXIDE FINISH	
39	AS REQ'D	1/2"-13 UNC X 1-1/2"	BOLT, HEX, SERRATED FLANGE, GRADE 5, ZINC-PLATED	
40	AS REQ'D	1/2"-13 UNC X 1-1/2"	SCREW, HEX, CAP, FLAT SOCKET HEAD, BLACK OXIDE FINISH	
41	4	5/8" - MS 16624	RING, RETAINING, EXTERNAL, SERIES 3100	
42		5/8" X 1-1/2"	PIN, DOWEL, GROUND, HARDENED	
43		5/8" - 11 UNC x 1-1/2"	BOLT, HEX, SERRATED FLANGE, GRADE 5, ZINC-PLATED	
	12	3/4"-10 UNC X 2-1/2"	BOLT, HEX, GRADE 5, BLACK OXIDE FINISH	
44	IZ			
44 45	12	3/4"	WASHER, LOCK	


	GT31BS-273 PARTS LIST												
ITEM	QTY GT31BS-273-01	QTY GT31BS-273-02	QTY GT31BS-273-03	PART NUMBER	DESCRIPTION								
2.1	1	0	0	GT31BS-080-01	ASSY, CENTER, SINGLE LEAD								
2.1	0	1	0	GT31BS-080-02	ASSY, CENTER, DOUBLE LEAD								
2.1	0	0	1	GT31BS-080-03	ASSY, CENTER, TRIPLE LEAD								
2.2	1	1	1	GT31-284	ASSY, UPPER AND LOWER HOUSING, MACHINED								
2.3	1	0	0	GT31-294-01	ASSY, WORM SHAFT AND BEARING, 7/8" SINGLE								
2.3	0	1	0	GT31-294-02	ASSY, WORM SHAFT AND BEARING, 7/8" DOUBLE								
2.3	0	0 0 1 1 1 1		GT31-294-03	ASSY, WORM SHAFT AND BEARING, 7/8" TRIPLE								
2.4	1			GT31-063	CAP, FILL, OIL								
2.5	1	1	1	GT31-085	CAP, BEARING, REAR END								
2.6	1	1	1	GT31-085-FE	CAP, BEARING, FORWARD END								
2.7	AS REQ'D	AS REQ'D	AS REQ'D	GT31-087	SHIM, CAP, BEARING								
2.8	1	1	1	GT31-276	GLASS, SIGHT, OIL								
2.9	1	1	1	GT31-277	PLUG, DRAIN, OIL								
2.10	1	1	1	GT31-278	PLUG, OIL								
2.11	1	1	1	GT31-279	O-RING, PLUG, OIL								
2.12	1	1	1	GT31-287	SEAL, SHAFT, RADIAL								
2.13	1	1	1	GT31-287-1	SEAL, SHAFT, RADIAL								
2.14	4	4	4	GT31-295	SHIM, ECCENTRIC, EDGE BONDED								
2.15	1	1	1	GT31-301	KEY, SHAFT, WORM								
2.16	20	20	20	1/2"-13 UNC X 1-1/2"	BOLT, HEX, SERRATED FLANGE, GRADE 5, ZINC-PLATED								




GT31BS-LH

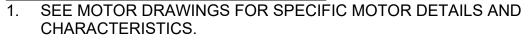
		0		RRECTED VARIOUS	DRO	HOLLISTER-WHITNEY					
C		MO	TOR SELECTIONS,	07/27/23	ELEVATOR CO. LLC					C	
				PUR #1801		TITLE					
RECTED PART				ORRECTED DUTY	DRO	ASSY, GT31, LEFT HAND, BS					
BER, PUR #1808	08/18/23		I A	ABLES, PUR #1772 05/18/23							
IS SUPPLIED AS A REPRESEN IEY ELEVATOR CO. LLC ("MAN ADJUSTMENTS MAY OCCUR E	UFACTURER") H.	AS AGRE	ED TO	THIRD ANGLE PRO	DJECTION	DRAWN BY	SCALE	MATE			REFERENCE TOL.
N. ANY MODIFICATIONS NOT			DRO	1:8		N/A		UNLESS OTHERWISE SPECIFIED			
ELEASES MANUFACTURER OF CONTAINS CONFIDENTIAL AND REPRODUCED OR DIVULGED, I	D PROPRIETARY				$+ + \oplus$		IZE	C	DATE		GT31BS-LH
EN AUTHORIZATION FROM TH	E MANUFACTUR	ER.					С		5/8/2023		SHEET 3



Page 36

DETAIL F

annanna -	
	0
	2.5
E BELLES MARGENERAL	
	2.16
ᡔ᠊ᡔ᠊ᠵ᠊ᡔᠵᢇ᠘ᢩ᠘᠘ᢣᢩ᠆᠆᠆᠆᠆ᢞ᠇	2.7
SECTION E-E	
HOLLISTER-W ELEVATOR CO.	
ASSY, GT31, LEFT H	AND, BS
SCALE MATERIAL	REFERENCE TOL. ALL DIMENSIONS REFERENCE UNLESS OTHERWISE SPECIFIED
DATE B 5/8/2023	GT31BS-LH SHEET 5
	Page 37


SPEED CAP (lbs)	· · · · ·					IOTOR CHAR					1				
CAD (lbc)	(ft/min)	50	75	100	125	150	175	200	250	300	3	50	400	450	500
	SHEAVE SIZE (in)														
		71:1	71:1	71:1	71:1	71:1	71:2	71:2	71:2	71:2	71	1:3	71:3	71:3	71:3
2000	26	CMTR1001	CMTR1001	CMTR1001	CMTR1505	CMTR1505	CMTR2001	CMTR2001	CMTR3005	CMTR30	05 CMTF	R2501	CMTR4005	CMTR4005	CMTR4
		N/A	N/A	N/A	N/A	N/A	N/A	IG3MTR2013	IG3MTR3014	IG1MTR3	515 IG3M1	FR3013	IG3MTR3014	IG1MTR3515	IG3MTF
		71:1	71:1	71:1	71:1	71:1	71:2	71:2	71:2	71:2	71	1:3	71:3	71:3	71:
2000	30	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR2001	CMTR30		R2501	CMTR2501	CMTR4005	CMTR4
		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	IG3MTR3	014 IG3M1	FR3013	IG3MTR3013	IG3MTR3014	IG1MTF
		71:1	71:1	71:1	71:1	71:1	71:2	71:2	71:2	71:2		1:3	71:3	71:3	71:
2500	26	CMTR1001	CMTR1001	CMTR1001	CMTR1505	CMTR1505	CMTR2001	CMTR2001	CMTR3005	CMTR30			CMTR4005	CMTR4005	CMTR
		N/A	N/A	N/A	N/A	N/A	N/A	IG3MTR2013	IG3MTR3014	IG1MTR3		FR3013	IG3MTR3014	IG3MTR5023	IG3MTF
		71:1	71:1	71:1	71:1	71:1	71:2	71:2	71:2	71:2		1:3	71:3	71:3	71:
2500	30	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR3005	CMTR2001	CMTR2001	CMTR2001	CMTR30			CMTR3001	CMTR5005	CMTR
2000	50	N/A	N/A	N/A	N/A	N/A	N/A	N/A	IG3MTR2013	IG3MTR3		TR3013	liG3MTR301	IG3MTR5014	IG3MTF
2022		71:1	71:1	71:1	71:1	71:1	71:2	71:2	71:2	71:2		1:3	71:3	71:3	71:
3000	26	CMTR2001	CMTR2001	CMTR2001	CMTR1505	CMTR3005	CMTR2001	CMTR2001	CMTR3005	CMTR30			CMTR5005	CMTR5005	CMTR
		N/A	N/A	IG3MTR2013	IG1MTR1514	IG1MTR3515	N/A	IG3MTR2013	IG3MTR3014	IG1MTR3		FR3013	IG3MTR5014	IG3MTR5023	IG3MTF
		71:1	71:1	71:1	71:1	71:1	71:2	71:2	71:2	71:2		1:3	71:3	71:3	71:
3000	30	CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR2501	CMTR2501	CMTR2501	CMTR40			CMTR5001	CMTR5005	CMTR
		N/A	N/A	IG1MTR1030	IG1MTR1514	IG1MTR1514	N/A	IG1MTR2504	IG3MTR3013	IG3MTR3	014 IG3M1	FR3013	IG3MTR5013	IG3MTR5014	IG3MT
		71:1	71:1	71:1	71:1	71:1	71:2	71:2	71:2	71:2	71	1:3	71:3	71:3	71:
3500	26	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR3005	CMTR2501	CMTR2501	CMTR4005	CMTR40	05 CMTF	R5001	CMTR5005	CMTR5005	CMTR
		N/A	N/A	IG3MTR2013	IG1MTR1514	IG1MTR3515	N/A	IG3MTR2013	IG3MTR3014	IG1MTR3	515 IG3M1	FR5013	IG3MTR5014	IG3MTR5023	IG3MTF
		71:1	71:1	71:1	71:1	71:1	71:2	71:2	71:2	71:2	71	1:3	71:3	71:3	71:
3500	30	CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR2501	CMTR2501	CMTR3001	CMTR40		R5001	CMTR5001	CMTR6005	CMTR
		N/A	N/A	IG3MTR2030	IG3MTR2013	IG3MTR3014	N/A	IG1MTR2504	IG3MTR3013	IG3MTR3	014 IG3M1	FR5013	IG3MTR5013	IG3MTR5014	IG3MT
		71:1	71:1	71:1	71:1	71:1	71:2	71:2	71:2	71:2	71	1:3	71:3	71:3	
4000	26	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR3005	CMTR2501	CMTR2501	CMTR4005	CMTR40			CMTR6005	CMTR6005	N//
		N/A	N/A	IG3MTR2013	IG1MTR1514	IG1MTR3515	N/A	IG3MTR3013	IG3MTR3014	IG3MTR5		FR5013	IG3MTR5014	IG3MTR5023	
		71:1	71:1	71:1	71:1	71:1	71:2	71:2	71:2	71:2		1:3	71:3	10011110020	
4000	30	CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR3001	CMTR3001	CMTR3001	CMTR50			CMTR5001	71:3 N/A	N//
4000	50	N/A	N/A	IG3MTR2030	IG3MTR2013	IG3MTR3014	N/A	IG1MTR2504	IG3MTR3013	IG3MTR5		TR5013	IG3MTR5013	IG3MTR5014	1 1/7
		71:1	71:1	71:1	71:1	71:1	71:2	71:2	71:2	71:2		1:3	71:3		
4500	06		CMTR2001			CMTR3005	CMTR3001						CMTR6005	N1/A	N//
4000	26	CMTR2001		CMTR2001	CMTR3005			CMTR3001	CMTR4005	CMTR40				N/A	IN//
		N/A	N/A	IG3MTR2013	IG3MTR3014	IG1MTR3515	N/A	IG3MTR3013	IG3MTR5014	IG3MTR5		FR5013	IG3MTR5014		
		74.4	744	744											
		71:1	71:1	71:1	71:1	71:1	71:2	71:2	71:2	71:2		1:3	71:3		
4500	30	71:1 CMTR2001 N/A	71:1 CMTR2001 N/A	71:1 CMTR2001 IG3MTR2030	71:1 CMTR2001 IG3MTR2013	71:1 CMTR3005 IG3MTR3014	CMTR3001 N/A	CMTR3001 IG1MTR2504	71:2 CMTR5001 IG3MTR3013	71:2 CMTR50 IG3MTR5			CMTR5001 IG3MTR5013	N/A	N//

	71:1	71:1	71:2	71:2	71:2	7	1:2	71:3	71:3	71:3	71:3
	CMTR1505	CMTR1505	CMTR2001	CMTR200	1 CMTR3005	CMTI	R3005	CMTR2501	CMTR4005	CMTR4005	CMTR4005
	N/A	N/A	N/A	IG3MTR20	13 IG3MTR3014	IG1M	TR3515	IG3MTR301	3 IG3MTR3014	IG1MTR3515	IG3MTR5023
	71:1	71:1	71:2	71:2	71:2	7	1:2	71:3	71:3	71:3	71:3
	CMTR1001	CMTR1505	CMTR2001	CMTR200	1 CMTR2001	CMTI	R3005	CMTR2501	CMTR2501	CMTR4005	CMTR4005
	N/A	N/A	N/A	N/A	N/A	IG3M	FR3014	IG3MTR301	3 IG3MTR3013	IG3MTR3014	IG1MTR3515
	71:1	71:1	71:2	71:2	71:2	7	1:2	71:3	71:3	71:3	71:3
	CMTR1505	CMTR1505	CMTR2001	CMTR200	1 CMTR3005	CMTI	R3005	CMTR2501	CMTR4005	CMTR4005	CMTR4005
	N/A	N/A	N/A	IG3MTR20	13 IG3MTR3014	IG1M	TR3515	IG3MTR301	3 IG3MTR3014	IG3MTR5023	IG3MTR5023
	71:1	71:1	71:2	71:2	71:2	7	1:2	71:3	71:3	71:3	71:3
	CMTR1001	CMTR3005	CMTR2001	CMTR200	1 CMTR2001	CMTI	R3005	CMTR3001	CMTR3001	CMTR5005	CMTR5005
	N/A	N/A	N/A	N/A	IG3MTR2013	IG3M ⁻	TR3014	IG3MTR301	3 IIG3MTR301	IG3MTR5014	IG3MTR5014
	71:1	71:1	71:2	71:2	71:2	7	1:2	71:3	71:3	71:3	71:3
	CMTR1505	CMTR3005	CMTR2001	CMTR200	1 CMTR3005	CMTI	R3005	CMTR3001	CMTR5005	CMTR5005	CMTR5005
3	IG1MTR1514	IG1MTR3515	N/A	IG3MTR20	13 IG3MTR3014	IG1M	TR3515	IG3MTR301	3 IG3MTR5014	IG3MTR5023	IG3MTR5023
	71:1	71:1	71:2	71:2	71:2	7	1:2	71:3	71:3	71:3	71:3
	CMTR2001	CMTR3005	CMTR2501	CMTR250	1 CMTR2501	CMTI	R4005	CMTR5001	CMTR5001	CMTR5005	CMTR5005
0	IG1MTR1514	IG1MTR1514	N/A	IG1MTR25	04 IG3MTR3013	IG3M ⁻	TR3014	IG3MTR301	3 IG3MTR5013	IG3MTR5014	IG3MTR5014
	71:1	71:1	71:2	71:2	71:2	7	1:2	71:3	71:3	71:3	71:3
	CMTR3005	CMTR3005	CMTR2501	CMTR250	1 CMTR4005	CMTI	R4005	CMTR5001	CMTR5005	CMTR5005	CMTR5005
3	IG1MTR1514	IG1MTR3515	N/A	IG3MTR20	13 IG3MTR3014	IG1M	TR3515	IG3MTR501	3 IG3MTR5014	IG3MTR5023	IG3MTR5023
	71:1	71:1	71:2	71:2	71:2	7	1:2	71:3	71:3	71:3	71:3
	CMTR2001	CMTR3005	CMTR2501	CMTR250	1 CMTR3001	СМТІ	R4005	CMTR5001	CMTR5001	CMTR6005	CMTR6005
0	IG3MTR2013	IG3MTR3014	N/A	IG1MTR25	04 IG3MTR3013	IG3M ⁻	TR3014	IG3MTR501	3 IG3MTR5013	IG3MTR5014	IG3MTR5014
	71:1	71:1	71:2	71:2	71:2	7	1:2	71:3	71:3	71:3	
	CMTR3005	CMTR3005	CMTR2501	CMTR250	1 CMTR4005	СМТІ	R4005	CMTR5001	CMTR6005	CMTR6005	N/A
3	IG1MTR1514	IG1MTR3515	N/A	IG3MTR30	13 IG3MTR3014	IG3M ⁻	FR5023	IG3MTR501	3 IG3MTR5014	IG3MTR5023	
	71:1	71:1	71:2	71:2	71:2	7	1:2	71:3	71:3		
	CMTR2001	CMTR3005	CMTR3001	CMTR300	1 CMTR3001	СМТІ	R5005	CMTR5001	CMTR5001	71:3 N/A	N/A
0	IG3MTR2013	IG3MTR3014	N/A	IG1MTR25	04 IG3MTR3013	IG3M ⁻	TR5014	IG3MTR501	3 IG3MTR5013	IG3MTR5014	
	71:1	71:1	71:2	71:2	71:2	7	1:2	71:3	71:3		
	CMTR3005	CMTR3005	CMTR3001	CMTR300			R4005	CMTR5001	CMTR6005	N/A	N/A
3	IG3MTR3014	IG1MTR3515	N/A	IG3MTR30			TR5023	IG3MTR501			
	71:1	71:1	71:2	71:2	71:2		1:2	71:3	71:3		
	CMTR2001	CMTR3005	CMTR3001	CMTR300			R5005	CMTR5001	CMTR5001	N/A	N/A
0	IG3MTR2013	IG3MTR3014	N/A	IG1MTR25	04 IG3MTR3013	IG3M ⁻	TR5014	IG3MTR501	3 IG3MTR5013		
-										1	1
1							1				
				GT21 2	CTED VARIOUS	DRO		HOL	LISTER-	WHITNI	ΞY
				-		07/27/23			ELEVATOR C	CO. LLC	
				P	UR #1801		TITLE				
		ECTED PART	DRO			DRO		AS	SY, GT31, LEF	T HAND, BS	
	INUIVIDE	ER, PUR #1808 SUPPLIED AS A REPRESE	08/18/23		S, PUR #1772	05/18/23	-				
	HOLLISTER-WHITNEY	SUPPLIED AS A REPRESE 'ELEVATOR CO. LLC ("MA JUSTMENTS MAY OCCUF	NUFACTURER") HAS A	GREED TO IH	IRD ANGLE PROJ	ECTION	DRAWN BY	SCALE MATE			RENCE TOL.
	INSTALLATION.	ANY MODIFICATIONS NO MAY AFFECT OPERATION	T APPROVED IN WRITI	NG BY	ī		DRO		N/A		ENSIONS REFERENCE ESS OTHERWISE SPECIFIED
	RELE	ASES MANUFACTURER C	F ALL LIABILITY.				SHEET S	IZE D	ATE		T31BS-LH
	THAT CANNOT BE REP	RODUCED OR DIVULGED	, IN WHOLE OR IN PAF		$\square \heartsuit$			В	5/8/2023	G	SHEET 6
											SHEET U

					Ν	IOTOR CHAR	T 1:1 ROPIN	IG						
SPEED	(ft/min)	50	75	100	125	150	175	200	250	300	350	400	450	500
CAP (lbs)	SHEAVE SIZE (in)													
		71:1	71:1	71:1	71:1	71:1	71:2	71:2	71:2	71:2	71:3			
5000	26	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR3005	CMTR3001	CMTR3001	CMTR5005	CMTR5005	CMTR5001	N/A	N/A	N/A
		N/A	N/A	IG3MTR2013	IG3MTR3014	IG1MTR3515	N/A	IG3MTR3013	IG3MTR5014	IG3MTR5023	IG3MTR5013			
		71:1	71:1	71:1	71:1	71:1	71:2	71:2	71:2	71:2				
5500	26	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR3005	CMTR5001	CMTR5001	CMTR5005	CMTR5005	N/A	N/A	N/A	N/A
		N/A	N/A	IG3MTR2013	IG3MTR3014	IG1MTR3515	N/A	IG3MTR3013	IG3MTR5014	IG3MTR5023				
		71:1	71:1	71:1	71:1	71:1	71:2	71:2	71:2					
6000	26	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR3005	CMTR5001	CMTR5001	CMTR6005	N/A	N/A	N/A	N/A	N/A
		N/A	N/A	IG3MTR2013	IG3MTR3014	IG1MTR3515	N/A	IG3MTR3013	IG3MTR5014					

2. CELL FORMAT IS AS FOLLOWS:

GEAR RATIO ABB OR WEG MOTOR 49:X 🗡 PART NUMBER IMPERIAL MOTOR **CMTRXXXX** PART NUMBER IGXMTRXXXX 🗡

		CORRECTED VARIOUS GT31 2:1 30" WHEEL	DRO	HO	LLISTER-V	WHľ	TNEY
	C	MOTOR SELECTIONS,	07/27/23		ELEVATOR C	O. LLC	C
		PUR #1801		TITLE			
CORRECTED PART DRO	в	CORRECTED DUTY	DRO	Λ	ASSY, GT31, LEFT		
NUMBER, PUR #1808 08/18/23	Ъ	TABLES, PUR #1772	05/18/23	P	ASST, GIST, LEFT		, вз
THIS DRAWING IS SUPPLIED AS A REPRESENTATION OF THE INCLUSTER-WHITNEY ELEVATOR CO. LLC ("MANUFACTURER") HA	AS AGREED	TO THIRD ANGLE PRO	IECTION	DRAWN SCALE MA	TERIAL		REFERENCE TOL.
JPPLY. SLIGHT ADJUSTMENTS MAY OCCUR DURING MANUFAC INSTALLATION. ANY MODIFICATIONS NOT APPROVED IN WF MANUFACTURER MAY AFFECT OPERATION, VOIDS ANY WARF	RITING BY			DRO	N/A		ALL DIMENSIONS REFERENCE UNLESS OTHERWISE SPECIFIED
RELEASES MANUFACTURER OF ALL LIABILITY. IIS DOCUMENT CONTAINS CONFIDENTIAL AND PROPRIETARY IT CANNOT BE REPRODUCED OR DIVULGED. IN WHOLE OR IN I				SHEET SIZE	DATE		GT31BS-LH
WRITTEN AUTHORIZATION FROM THE MANUFACTURE				В	5/8/2023		SHEET 7

SPEED	(ft/min)	50	75	100	125	150	175	200	225	250
SPEED CAP (lbs)	SHEAVE SIZE (in)	50	10	100	125	150	175	200	225	230
		71:1	71:1	71:2	71:2	71:2	71:3	71:3	71:3	71:3
2500	26	CMTR1001	CMTR1505	CMTR1001	CMTR1505	CMTR1505	CMTR2001	CMTR3005	CMTR3005	CMTR30
2000	20	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		71:1	71:1	71:2	71:2	71:2	71:3	71:3	71:3	71:3
2500	30	CMTR1001	CMTR1505	CMTR1001	CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR3005	CMTR30
2000		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		71:1	71:1	71:2	71:2	71:2	71:3	71:3	71:3	71:3
3000	26	CMTR1001	CMTR1505	CMTR1001	CMTR1505	CMTR1505	CMTR2001	CMTR3005	CMTR3005	CMTR30
		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		71:1	71:1	71:2	71:2	71:2	71:3	71:3	71:3	71:3
3000	30	CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR3005	CMTR2001	CMTR2001	CMTR3005	CMTR30
		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		71:1	71:1	71:2	71:2	71:2	71:3	71:3	71:3	71:3
3500	26	CMTR1001	CMTR1505	CMTR2001	CMTR3005	CMTR3005	CMTR2001	CMTR3005	CMTR3005	CMTR3
		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		71:1	71:1	71:2	71:2	71:2	71:3	71:3	71:3	71:3
3500	30	CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR3005	CMTR2001	CMTR2001	CMTR3005	CMTR3
		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		71:1	71:1	71:2	71:2	71:2	71:3	71:3	71:3	71:3
4000	26	CMTR1001	CMTR1505	CMTR2001	CMTR3005	CMTR3005	CMTR2001	CMTR3005	CMTR3005	CMTR3
		N/A	N/A	IG3MTR2013	N/A	IG1MTR3515	N/A	IG3MTR3014	N/A	IG3MTR
		71:1	71:1	71:2	71:2	71:2	71:3	71:3	71:3	71:3
4000	30	CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR3005	CMTR2501	CMTR2501	CMTR4005	CMTR4
		N/A	N/A	N/A	IG1MTR1514	IG3MTR3014	N/A	IG3MTR3013	N/A	N/A
		71:1	71:1	71:2	71:2	71:2	71:3	71:3	71:3	71:3
4500	26	CMTR1001	CMTR1505	CMTR2001	CMTR3005	CMTR3005	CMTR2001	CMTR3005	CMTR4005	CMTR4
		N/A	N/A	IG3MTR2013	N/A	IG1MTR3515	N/A	IG3MTR3014	N/A	IG3MTR
		71:1	71:1	71:2	71:2	71:2	71:3	71:3	71:3	71:3
4500	30	CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR3005	CMTR2501	CMTR2501	CMTR4005	CMTR4
		N/A	N/A	N/A	IG3MTR2013	IG3MTR3014	N/A	IG3MTR3013	N/A	N/A
		71:1	71:1	71:2	71:2	71:2	71:3	71:3	71:3	71:3
5000	26	CMTR1001	CMTR1505	CMTR2001	CMTR3005	CMTR3005	CMTR2501	CMTR4005	CMTR4005	CMTR4
		N/A	N/A	IG3MTR2013	IG3MTR3014	IG1MTR3515	N/A	IG3MTR3014	N/A	IG3MTR
		71:1	71:1	71:2	71:2	71:2	71:3	71:3	71:3	71:3
5000	30	CMTR1001 N/A	CMTR1505	CMTR2001	CMTR2001	CMTR3005	CMTR3001	CMTR3001	CMTR4005 N/A	CMTR4
			N/A	IG1MTR2504	IG3MTR2013	IG3MTR3014	N/A	IG3MTR3013		

1. SEE MOTOR DRAWINGS FOR SPECIFIC MOTOR DETAILS AND CHARACTERISTICS.

2. CELL FORMAT IS AS FOLLOWS:

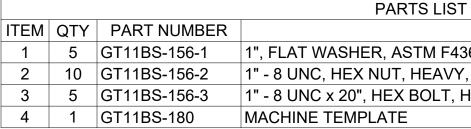
GEAR RATIO ABB OR WEG MOTOR 49:X 🗡 IMPERIAL MOTOR PART NUMBER CMTRXXXX PART NUMBER IGXMTRXXXX 🗡

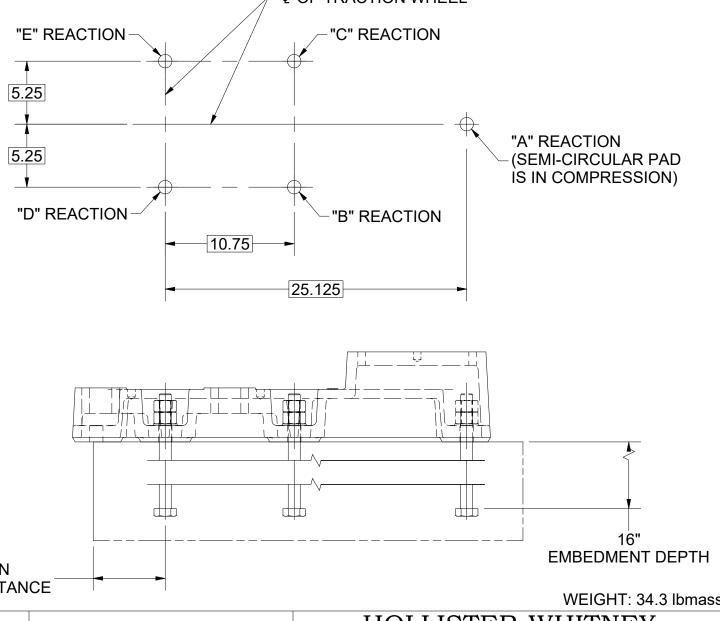
			0		RECTED VARIOUS 31 2:1 30" WHEEL	DRO		HC	DLLISTER-V	WHI	TNEY
			C	MO	TOR SELECTIONS,	07/27/23			ELEVATOR C	O. LL	C
					PUR #1801		TITLE				
D	CORRECTED PART NUMBER, PUR #1808	DRO 08/18/23	В		DRRECTED DUTY BLES, PUR #1772	DRO 05/18/23			ASSY, GT31, LEFT	Γ ΗΑΝΙ	D, BS
HOLLIS	DRAWING IS SUPPLIED AS A REPRESEN TER-WHITNEY ELEVATOR CO. LLC ("MANI Y. SLIGHT ADJUSTMENTS MAY OCCUR D	JFACTURER") HA	AS AGRE	ED TO	THIRD ANGLE PRO	JECTION	DRAWN BY	SCALE M			REFERENCE TOL. ALL DIMENSIONS REFERENCE
IN	STALLATION. ANY MODIFICATIONS NOT A NUFACTURER MAY AFFECT OPERATION, N	APPROVED IN WE OIDS ANY WARE	RITING B	Y			DRO		N/A		UNLESS OTHERWISE SPECIFIED
	RELEASES MANUFACTURER OF OCUMENT CONTAINS CONFIDENTIAL ANE NNOT BE REPRODUCED OR DIVULGED, II	PROPRIETARY					SHEET S		DATE		GT31BS-LH
	WRITTEN AUTHORIZATION FROM TH							В	5/8/2023		SHEET 8

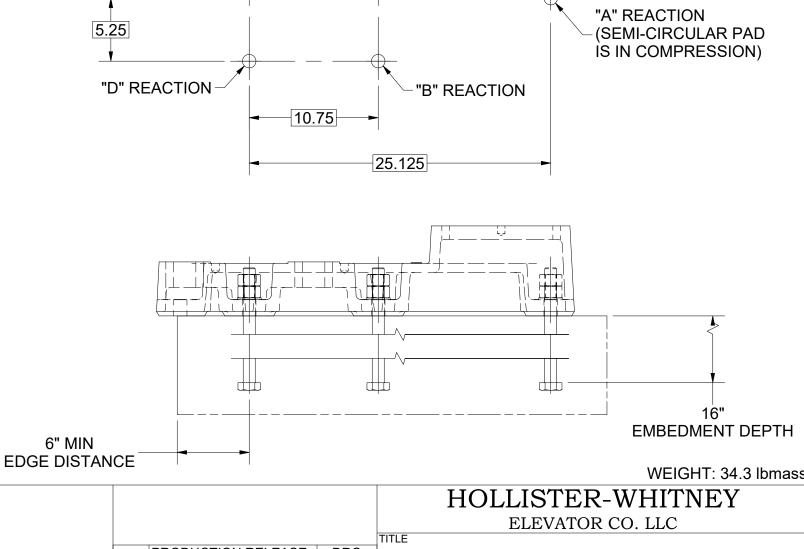
		MOTOR CHAR					1	1		
SPEED	(ft/min)	50	75	100	125	150	175	200	225	250
CAP (lbs)	SHEAVE SIZE (in)									
		71:1	71:1	71:2	71:2	71:2	71:3	71:3	71:3	71:
5500	26	CMTR1001	CMTR1505	CMTR2001	CMTR3005	CMTR3005	CMTR2501	CMTR4005	CMTR4005	CMTR
		N/A	N/A	IG3MTR2013	IG3MTR3014	IG1MTR3515	N/A	IG3MTR3014	N/A	IG3MT
		71:1	71:1	71:2	71:2	71:2	71:3	71:3	71:3	71
5500	30	CMTR2001	CMTR3005	CMTR2001	CMTR2001	CMTR3005	CMTR3001	CMTR3001	CMTR5005	CMTF
		N/A	N/A	IG1MTR2504	IG3MTR2013	IG3MTR3014	N/A	IG3MTR3013	N/A	IG3MT
		71:1	71:1	71:2	71:2	71:2	71:3	71:3	71:3	71
6000	26	CMTR1001	CMTR1505	CMTR2001	CMTR3005	CMTR3005	CMTR3001	CMTR4005	CMTR4005	CMTR
		N/A	N/A	IG3MTR2013	IG3MTR3014	IG1MTR3515	N/A	IG3MTR5014	N/A	IG3MT
		71:1	71:1	71:2	71:2	71:2	71:3	71:3	71:3	71
6000	30	CMTR2001	CMTR3005	CMTR2001	CMTR2001	CMTR4005	CMTR3001	CMTR3001	CMTR5005	CMTF
		N/A	N/A	IG1MTR2504	IG3MTR2013	IG3MTR3014	N/A	IG3MTR5013	N/A	IG3MT
		71:1	71:1	71:2	71:2	71:2	71:3	71:3	71:3	71
7000	26	CMTR2001	CMTR3005	CMTR2001	CMTR3005	CMTR4005	CMTR3001	CMTR5005	CMTR5005	CMTF
		IG3MTR2013	N/A	IG3MTR2013	IG3MTR3014	IG1MTR3515	N/A	IG3MTR5014	N/A	IG3M1
		71:1	71:1	71:2	71:2	71:2	71:3	71:3	71:3	71
7000	30	CMTR2001	CMTR3005	CMTR2501	CMTR2501	CMTR4005	CMTR5001	CMTR5001	CMTR6005	CMTF
		IG3MTR2030	N/A	IG1MTR2504	IG3MTR3013	IG3MTR3014	N/A	IG3MTR5013	N/A	IG3M1
		71:1	71:1	71:2	71:2	71:2	71:3	71:3		
8000	26	CMTR2001	CMTR3005	CMTR2501	CMTR4005	CMTR4005	CMTR5001	CMTR5005	N/A	N
		IG3MTR2013	N/A	IG3MTR2013	IG3MTR3014	IG3MTR5023	N/A	IG3MTR5014		
		71:1	71:1	71:2	71:2	71:2	71:3	71:3		
8000	30	CMTR2001	CMTR3005	CMTR3001	CMTR3001	CMTR4005	CMTR5001	CMTR5001	N/A	N
		IG3MTR2030	N/A	IG1MTR2504	IG3MTR3013	IG3MTR5014	N/A	IG3MTR5013		
		71:1	71:1	71:2	71:2	71:2	71:3	71:3		
9000	26	CMTR2001	CMTR3005	CMTR3001	CMTR4005	CMTR4005	CMTR5001	CMTR6005	N/A	N
		IG3MTR2013	N/A	IG3MTR3013	IG3MTR3014	IG3MTR5023	N/A	IG3MTR5014		
		71:1	71:1	71:2	71:2	71:2	71:3	71:3		
9000	30	CMTR2001	CMTR3005	CMTR3001	CMTR3001	CMTR5005	CMTR5001	CMTR5001	N/A	N
		IG3MTR2030	N/A	IG1MTR2504	IG3MTR3013	IG3MTR5014	N/A	IG3MTR5013		
		71:1	71:1	71:2	71:2	71:2				
10000	26	CMTR2001	CMTR3005	CMTR3001	CMTR5005	CMTR5005	N/A	N/A	N/A	N
		IG3MTR2013	N/A	IG3MTR3013	IG3MTR5014	IG3MTR5023				
		71:1	71:1	71:2	71:2	71:2				
12000	26	CMTR2001	CMTR3005	CMTR5001	CMTR5005	CMTR6005	N/A	N/A	N/A	N
		IG3MTR2013	N/A	IG3MTR3013	IG3MTR5014	IG3MTR5023				

NOTES UNLESS OTHERWISE SPECIFIED:

1. SEE MOTOR DRAWINGS FOR SPECIFIC MOTOR DETAILS AND CHARACTERISTICS.


2. CELL FORMAT IS AS FOLLOWS:


GEAR RATIO ABB OR WEG MOTOR 49:X 🗡 PART NUMBER IMPERIAL MOTOR **▲**CMTRXXXX PART NUMBER IGXMTRXXXX 🗡

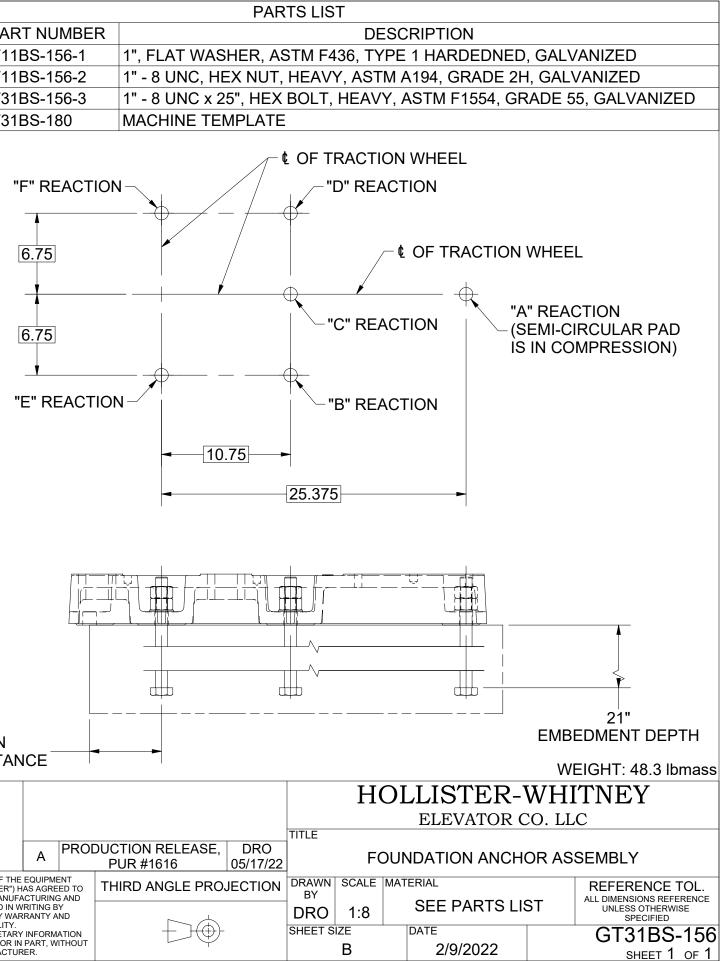

			С	GT	RECTED VARIOUS 31 2:1 30" WHEEL	DRO		HC	DLLISTER-V		
				MO	TOR SELECTIONS, PUR #1801	07/27/23	TITLE		ELEVATOR C	O. LL	C
D	CORRECTED PART NUMBER, PUR #1808	DRO 08/18/23	В		DRRECTED DUTY BLES, PUR #1772	DRO 05/18/23			ASSY, GT31, LEFT	T HANI	D, BS
HOLLIS SUPPI IN	S DRAWING IS SUPPLIED AS A REPRESEN STER-WHITNEY ELEVATOR CO. LLC ("MAN _Y. SLIGHT ADJUSTMENTS MAY OCCUR E ISTALLATION. ANY MODIFICATIONS NOT) NUFACTURER MAY AFFECT OPERATION.	UFACTURER") HA DURING MANUFA APPROVED IN WI VOIDS ANY WAR	AS AGRE CTURING RITING B	ED TO 3 AND Y	THIRD ANGLE PRO	JECTION	DRAWN BY DRO	SCALE M.	aterial N/A		REFERENCE TOL. ALL DIMENSIONS REFERENCE UNLESS OTHERWISE SPECIFIED
	RELEASES MANUFACTURER OF OCUMENT CONTAINS CONFIDENTIAL AND ANNOT BE REPRODUCED OR DIVULGED, I WRITTEN AUTHORIZATION FROM TH	D PROPRIETARY	PART, W				SHEET S	B	DATE 5/8/2023		GT31BS-LH SHEET 9

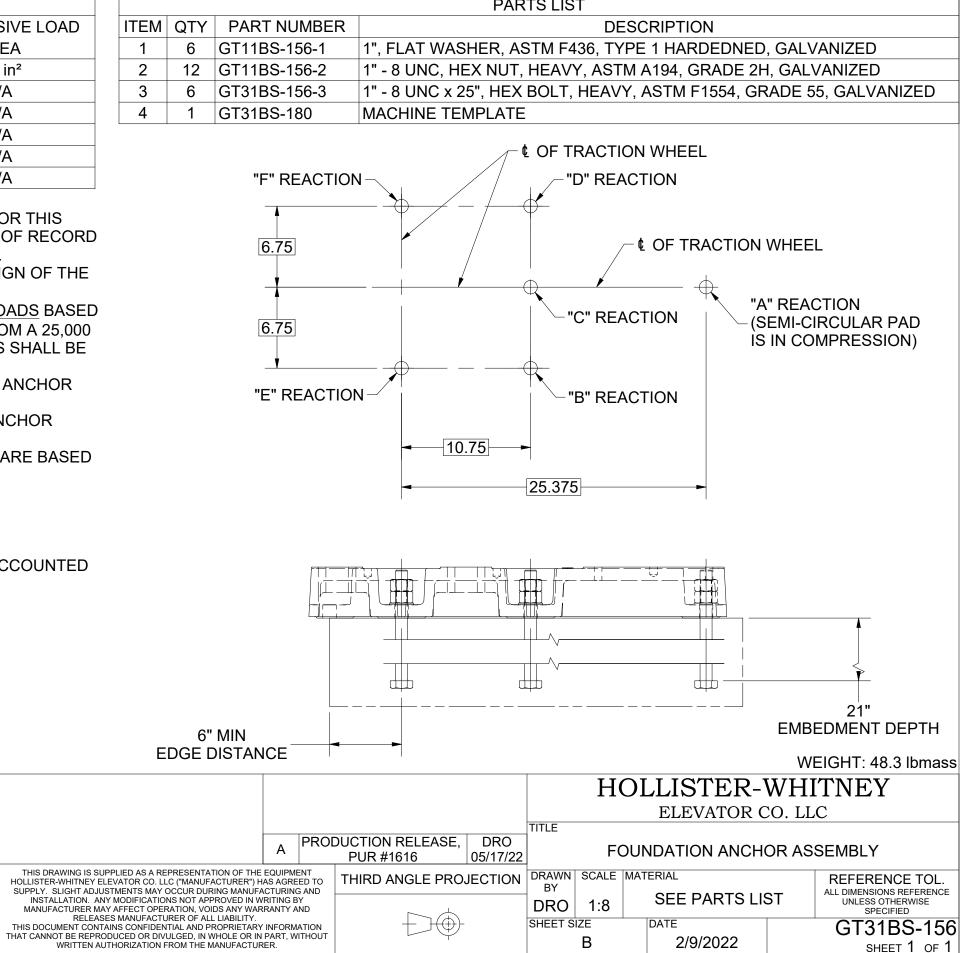
	FOUNDATION	BOLT REACTION FORCE	S
LOCATION	REACTION TYPE	SERVICE LOAD	COMPRESSIVE LOAD AREA
"A"	COMPRESSION	-1802 POUNDS	12.6 in ²
"B"	TENSION	2159 POUNDS	N/A
"C"	TENSION	2159 POUNDS	N/A
"D"	TENSION	7242 POUNDS	N/A
"E"	TENSION	7242 POUNDS	N/A
BASED HOLLIS FOUND 2. ALL AN ON THE POUND DOUBL ELEVAT DESIGN 3. THE WE LOADS 4. THE AN ON THE -CC -UN -UN -EE FC	ON THE LOADS AND LOO TER-WHITNEY ASSUMES ATION OR THE METHOD CHOR LOADS SHOWN IN OVERALL UPWARD PLU SHEAVE SHAFT LOAD. I ED PER SECTION 2.9.2.2 FORS. THEY SHALL ALSO I PER ACI 318. EIGHT OF THE MACHINE ICHOR ROD SIZE, GRADI FOLLOWING DESIGN AS ONCRETE STRENGTH = 4 I-CRACKED CONCRETE I-REINFORCED CONCRE EDGE DISTANCE IN THE O	CATIONS PROVIDED ON S NO RESPONSIBILITY FO OF THE ANCHORING EN I THE TABLE ABOVE ARE JMB VERTICAL LOAD RE FOR ANCHOR DESIGN, T OF ASME A17.1, SAFETY O BE FACTORED ACCOR HAS NOT BEEN INCLUDE E, AND EMBEDMENT DEF SSUMPTIONS: 1000PSI TTE ONE DIRECTION INDICA THER DIRECTIONS HAS	OR THE DESIGN OF THE MBEDMENT. E <u>SERVICE LOADS</u> BASED SULTING FROM A 17,000 HESE LOADS SHALL BE CODE FOR DINGLY FOR ANCHOR ED IN THE ANCHOR PTH SHOWN ARE BASED
			1) 4)

 \bigcap

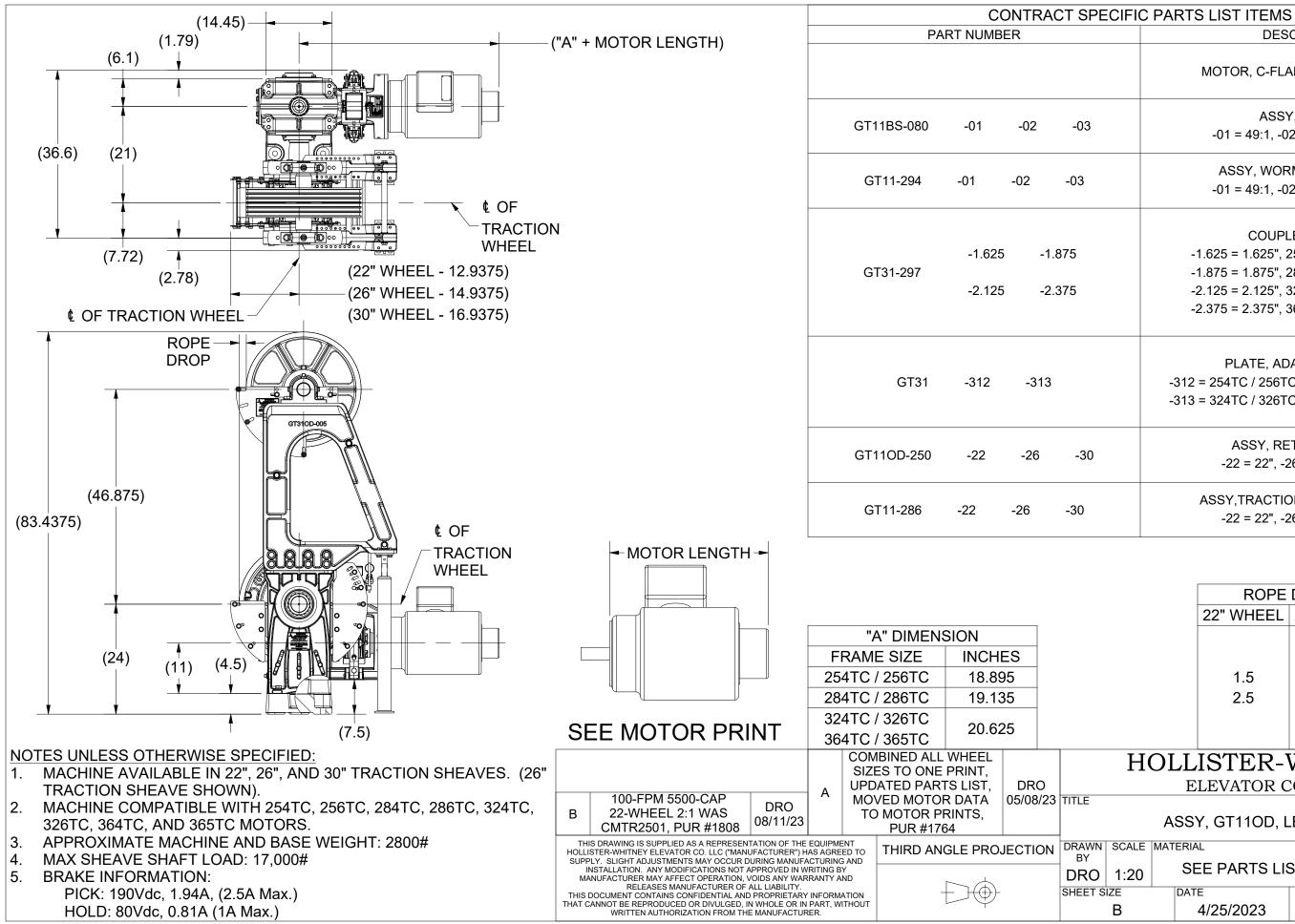
PRODUCTION RELEASE, DRO А PUR #1616 05/17/22 THIS DRAWING IS SUPPLIED AS A REPRESENTATION OF THE EQUIPMENT THIRD ANGLE PROJECTION HOLLISTER-WHITNEY ELEVATOR CO. LLC ("MANUFACTURER") HAS AGREED TO SUPPLY. SLIGHT ADJUSTMENTS MAY OCCUR DURING MANUFACTURING AND SUPPLY, SLIGHT ADJUSTMENTS MAY OCCUR DURING MANUFACTURING AND INSTALLATION. ANY MODIFICATIONS NOT APPROVED IN WRITING BY MANUFACTURER MAY AFFECT OPERATION, VOIDS ANY WARRANTY AND RELEASES MANUFACTURER OF ALL LIABILITY. THIS DOCUMENT CONTAINS CONFIDENTIAL AND PROPRIETARY INFORMATION THAT CANNOT BE REPRODUCED OR DIVULGED, IN WHOLE OR IN PART, WITHOUT WRITTEN AUTHORIZATION FROM THE MANUFACTURER. НФ

Page 42


					EMB	EDMENT DEPTH
				LISTER-		EIGHT: 34.3 lbmass
				-		
				ELEVATOR C	CO. LL	C
	TITLE					
2		FC	JUN	NDATION ANCH	OR AS	SEMBLY
	DRAWN BY	SCALE	MAT	ERIAL		REFERENCE TOL.
	DRO	1:8		SEE PARTS LIS	ST	UNLESS OTHERWISE SPECIFIED
	SHEET S	IZE		DATE		GT11BS-156
		В		2/7/2022		SHEET 1 OF 1
						Page


¢ OF TRACTION WHEEL

DESCRIPTION 1", FLAT WASHER, ASTM F436, TYPE 1 HARDEDNED, GALVANIZED 1" - 8 UNC, HEX NUT, HEAVY, ASTM A194, GRADE 2H, GALVANIZED 1" - 8 UNC x 20", HEX BOLT, HEAVY, ASTM F1554, GRADE 36, GALVANIZED


	FOUNDATION	BOLT REACTION FORC	
LOCATION	REACTION TYPE	SERVICE LOAD	COMPRESSIVE LOAD
			AREA 1
"A"	COMPRESSION	-2750 POUNDS	8.6 in ² 2
"B"	TENSION	2750 POUNDS	N/A 3
"C"	TENSION	1250 POUNDS	N/A 4
"D"	TENSION	2750 POUNDS	N/A
"E"	TENSION	10500 POUNDS	N/A
"F"	TENSION ND FOUNDATION NOTES	10500 POUNDS	N/A
BASED HOLLIS FOUNE 2. ALL AN ON THI POUNE DOUBL ELEVA DESIGI 3. THE W LOADS 4. THE AN ON THI -CO -UI -UI -UI -EI FO	ON THE LOADS AND LO STER-WHITNEY ASSUMES ATION OR THE METHOD ICHOR LOADS SHOWN IN E OVERALL UPWARD PLU SHEAVE SHAFT LOAD. I ED PER SECTION 2.9.2.2 TORS. THEY SHALL ALSO N PER ACI 318. EIGHT OF THE MACHINE S NCHOR ROD SIZE, GRADI E FOLLOWING DESIGN A ONCRETE STRENGTH = 4 N-CRACKED CONCRETE N-REINFORCED CONCRE EDGE DISTANCE IN THE	CATIONS PROVIDED ON S NO RESPONSIBILITY F OF THE ANCHORING E I THE TABLE ABOVE AR JMB VERTICAL LOAD RI FOR ANCHOR DESIGN, OF ASME A17.1, SAFET D BE FACTORED ACCOF HAS NOT BEEN INCLUE E, AND EMBEDMENT DE SSUMPTIONS: 1000PSI	FOR THE DESIGN OF THE MBEDMENT. E <u>SERVICE LOADS</u> BASED ESULTING FROM A 25,000 THESE LOADS SHALL BE TY CODE FOR RDINGLY FOR ANCHOR DED IN THE ANCHOR EPTH SHOWN ARE BASED
			2 1 4 THIS DRAWING IS SUPPLIED AS HOLLISTER-WHITNEY ELEVATOR C SUPPLY, SLIGHT ADJUSTMENTS I INSTALLATION, ANY MODIFIC

			PARTS LIST
ITEM	QTY	PART NUMBER	
1	6	GT11BS-156-1	1", FLAT WASHER, ASTM F436
2	12	GT11BS-156-2	1" - 8 UNC, HEX NUT, HEAVY,
3	6	GT31BS-156-3	1" - 8 UNC x 25", HEX BOLT, H
4	1	GT31BS-180	MACHINE TEMPLATE

Page 4	4
--------	---

			ELEVATOR C	CO. LL	С						
	ASSY, GT110D, LEFT HAND										
	SCALE	MAT	ERIAL		REFERENCE TOL.						
	1:20		SEE PARTS LIS	ST	ALL DIMENSIONS REFERENCE UNLESS OTHERWISE SPECIFIED						
5	IZE		DATE		GT110D-LH						
В			4/25/2023		SHEET 1 OF 10						

6.5 HOLLISTER-WHITNEY

ROPE	DROP DIME	NSION
22" WHEEL	26" WHEEL	30" WHEEL
		1.5
	1.5	2.5
1.5	2.5	3.5
2.5	3.5	4.5
	4.5	5.5
		65

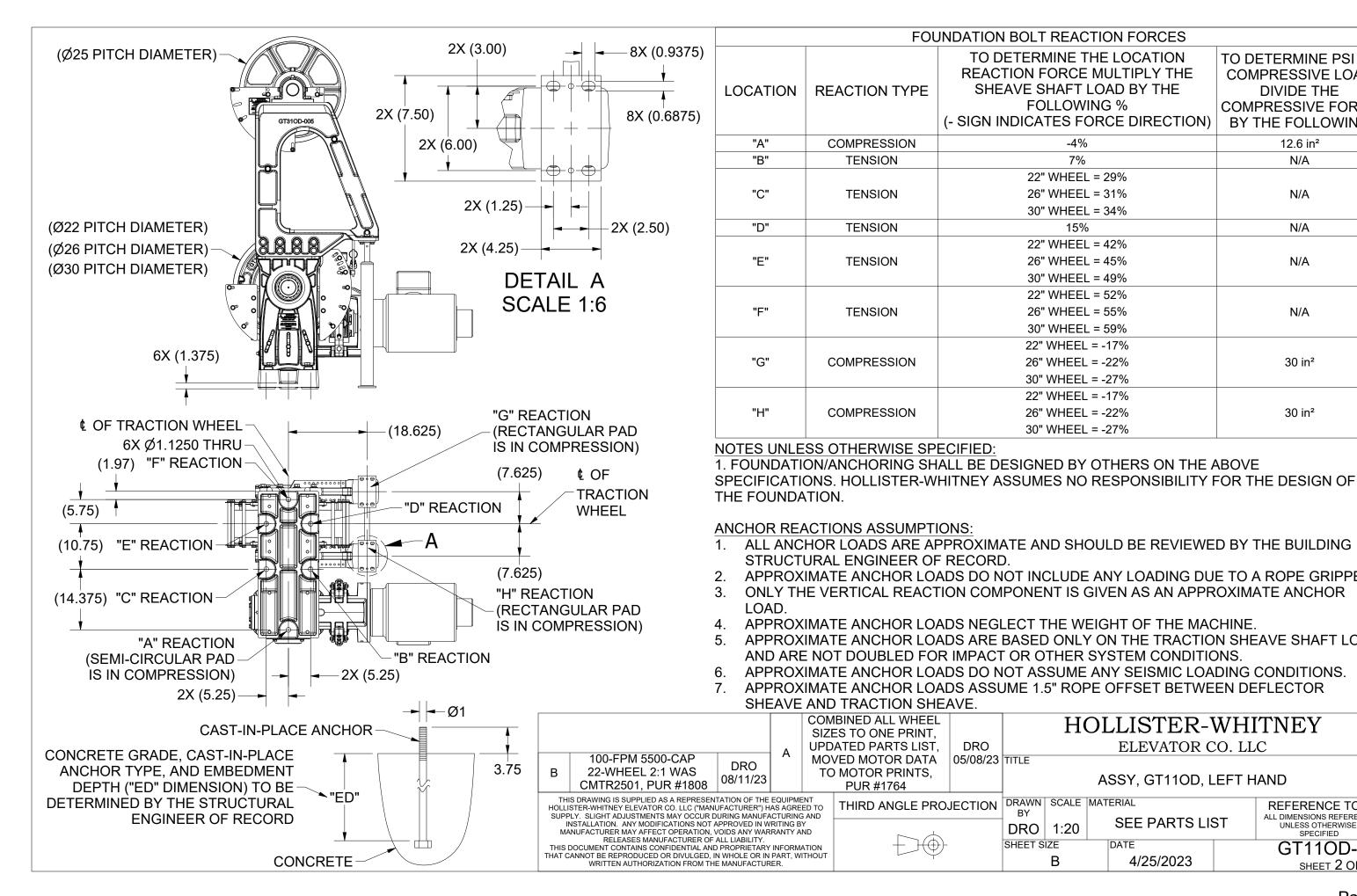
ASSY, TRACTION WHEEL AND HUB -22 = 22", -26 = 26", -30 = 30"

ASSY, RETAINER, ROPE

-22 = 22", -26 = 26", -30 = 30"

PLATE, ADAPTER, MOTOR
-312 = 254TC / 256TC / 284TC / 286TC FRAME
-313 = 324TC / 326TC / 364TC / 365TC FRAME

COUPLER, MOTOR -1.625 = 1.625", 254TC / 256TC FRAME -1.875 = 1.875", 284TC / 286TC FRAME -2.125 = 2.125", 324TC / 326TC FRAME -2.375 = 2.375", 364TC / 365TC FRAME


ASSY, CENTER
-01 = 49:1, -02 = 49:2, -03 = 49:3

ASSY, WORM AND BEARING

-01 = 49:1, -02 = 49:2, -03 = 49:3

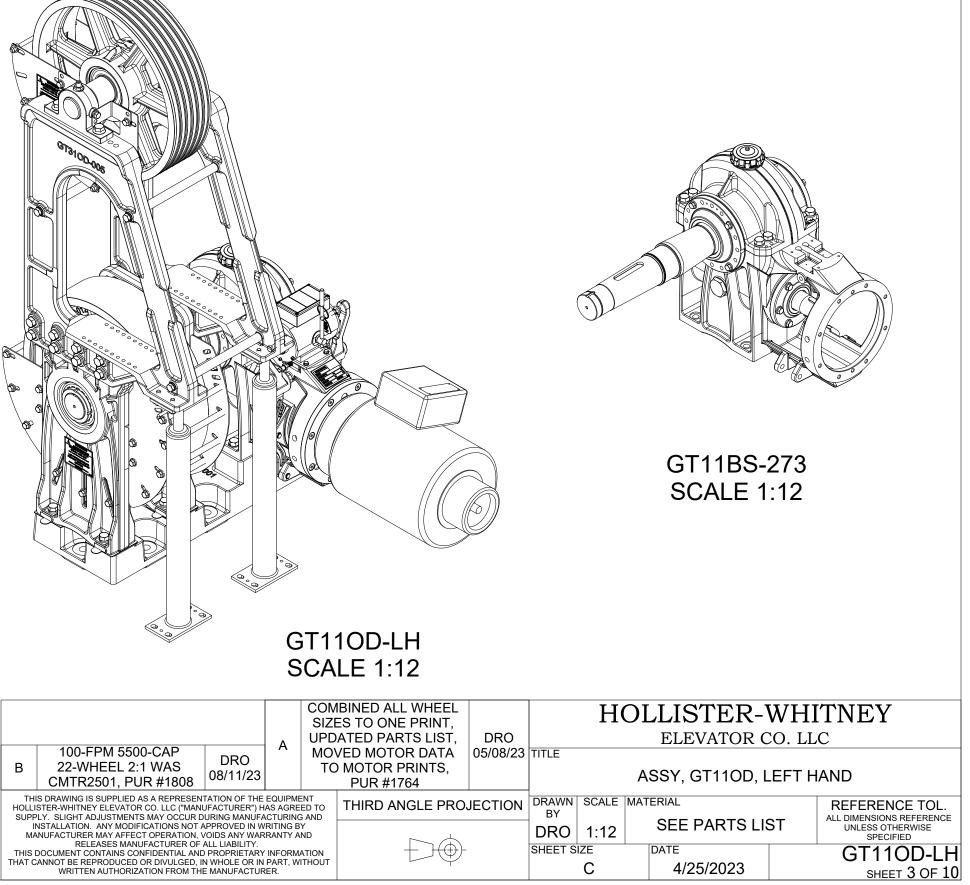
MOTOR, C-FLANGE - REFERENCE

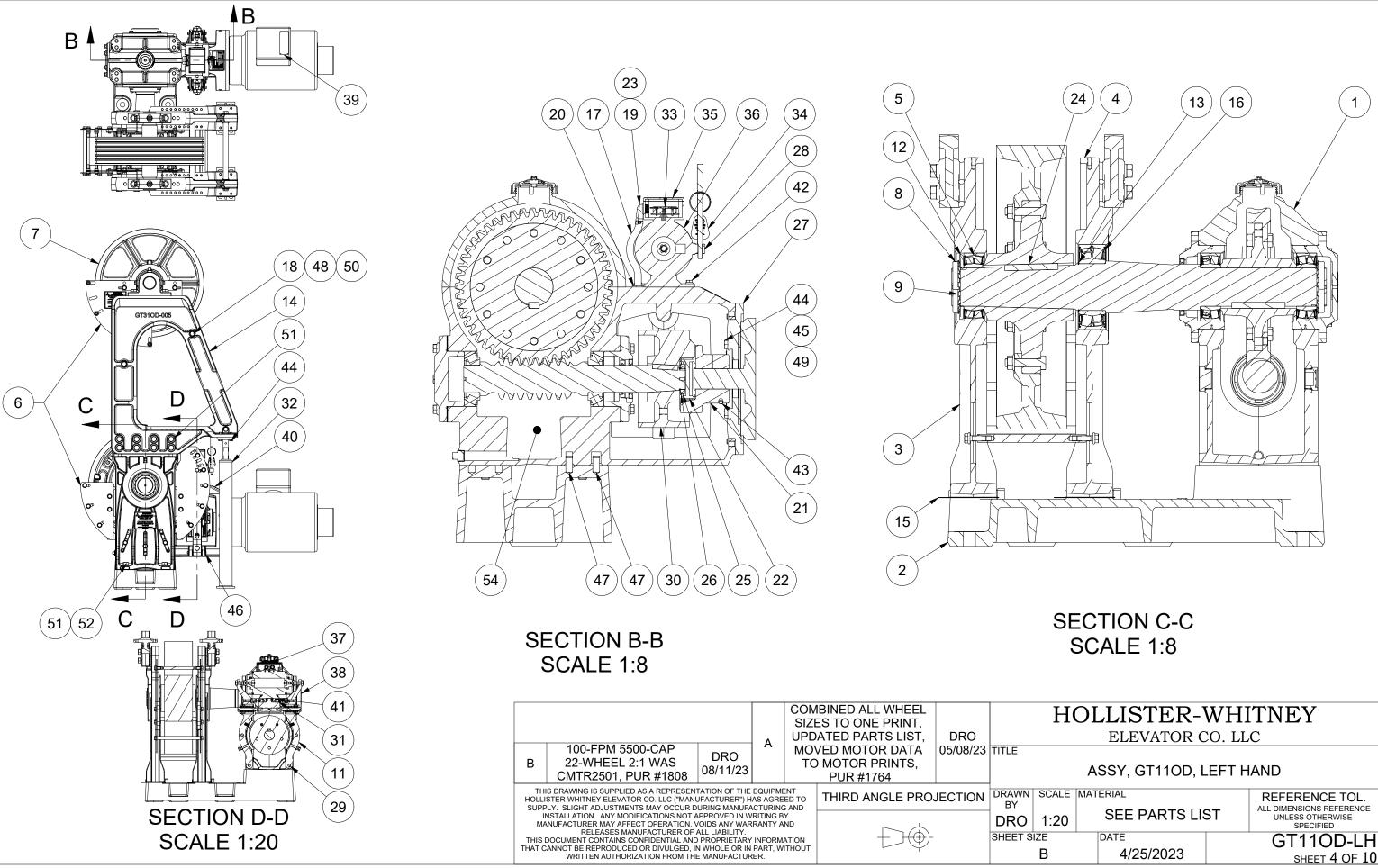
DESCRIPTION

Page 45

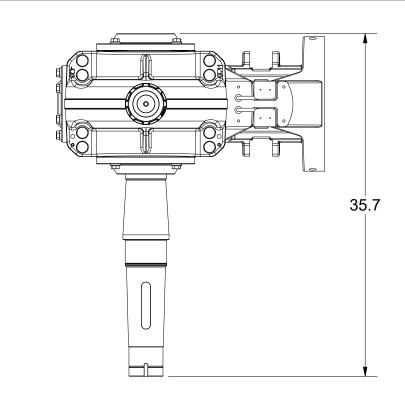
I	SCALE	MATERIAL		REFERENCE TOL.
	1:20	SEE PARTS LIS	ST	ALL DIMENSIONS REFERENCE UNLESS OTHERWISE SPECIFIED
S	IZE	DATE		GT110D-LH
	В	4/25/2023		SHEET 2 OF 10

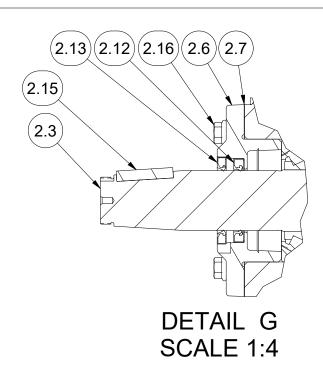
HOLLISTER-WHITNEY ELEVATOR CO. LLC

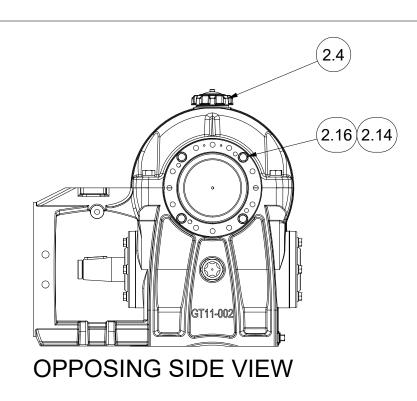

ASSY, GT110D, LEFT HAND

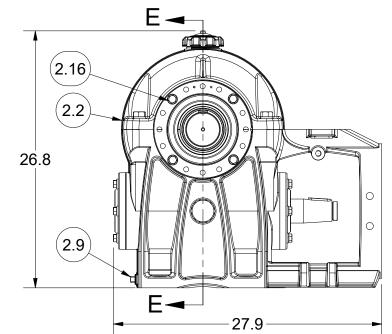

APPROXIMATE ANCHOR LOADS ARE BASED ONLY ON THE TRACTION SHEAVE SHAFT LOAD

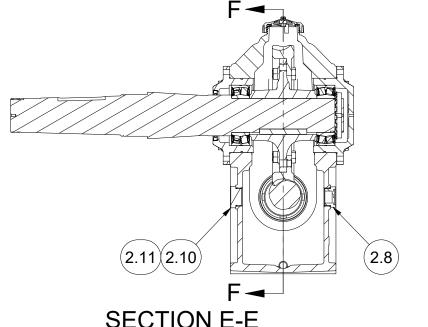
APPROXIMATE ANCHOR LOADS DO NOT INCLUDE ANY LOADING DUE TO A ROPE GRIPPER.

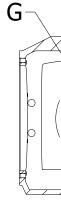

I REACTION FORCES	
MINE THE LOCATION FORCE MULTIPLY THE SHAFT LOAD BY THE DLLOWING % ATES FORCE DIRECTION)	TO DETERMINE PSI OF COMPRESSIVE LOAD DIVIDE THE COMPRESSIVE FORCE BY THE FOLLOWING
-4%	12.6 in ²
7%	N/A
" WHEEL = 29% " WHEEL = 31% " WHEEL = 34%	N/A
15%	N/A
" WHEEL = 42% " WHEEL = 45% " WHEEL = 49%	N/A
" WHEEL = 52% " WHEEL = 55% " WHEEL = 59%	N/A
" WHEEL = -17% " WHEEL = -22% " WHEEL = -27%	30 in²
" WHEEL = -17% " WHEEL = -22% " WHEEL = -27%	30 in²


ТЕМ	QTY	PART NUMBER	ERING MASTER PARTS LIST DESCRIPTION	ITEM	QTY	QTY	QTY	GT11-273 PARTS PART NUMBER	DESCRIPTION
1		GT11BS-273-01	ASSY, GEAR BOX, SINGLE LEAD, 49:1	4		GT11BS-273-02			
		GT11BS-273-02	ASSY, GEAR BOX, DOUBLE LEAD, 49:2	2.1	1	0	0	GT11BS-080-01	ASSY, CENTER, BS/OD, SINGLE LEAD
		GT11BS-273-03	ASSY, GEAR BOX, TRIPLE LEAD, 49:3	2.1	0	1	0	GT11BS-080-02	ASSY, CENTER, BS/OD, DOUBLE LEAD
2		GT11BS-001	BASE, BS/OD	2.1	0	0	1	GT11BS-080-03	ASSY, CENTER, BS/OD, TRIPLE LEAD
3		GT11BS-005	STAND, OUTBOARD, BS	2.1	1	1	1	GT11-284	ASSY, UPPER AND LOWER HOUSING, MACHINED
<u> </u>		GT11BS-006	STAND, OUTBOARD, BS	2.2	1	0	0	GT11-294-01	ASSY, WORM SHAFT AND BEARING, 7/8" SINGLE
5		GT11-093	BEARING, ROLLER, SPHERICAL	2.3	0	1	0	GT11-294-02	ASSY, WORM SHAFT AND BEARING, 7/8" DOUBLE
6		GT110D-250-22	ASSY, RETAINER, ROPE, OD, 22"	2.3	0	0	1	GT11-294-02	ASSY, WORM SHAFT AND BEARING, 7/8" DOUBLE
0		GT110D-250-22	ASSY, RETAINER, ROPE, OD, 22 ASSY, RETAINER, ROPE, OD, 26"	2.3	0	1	1	GT31-063	CAP, FILL, OIL
		GT110D-250-30	ASSY, RETAINER, ROPE, OD, 20 ASSY, RETAINER, ROPE, OD, 30"	2.4	1	1	1	GT31-085	CAP, FILL, OIL CAP, BEARING, REAR END
7		GT110D-331-027B	ASSY, SHEAVE, BALL BEARING, SEALED	2.5	1	1	1	GT31-085-FE	CAP, BEARING, FORWARD END
1		GT110D-331-027SR	ASSY, SHEAVE, SPHERICAL ROLLER BEARING, SEALED	2.0	AS REQ'D	AS REQ'D	AS REQ'D	GT31-087	SHIM, CAP, BEARING
8		GT11-282	NUT, LOCK, SHAFT	2.7				GT31-276	GLASS, SIGHT, OIL
9		GT11-283	WASHER, LOCK, SHAFT	2.0	1	1	1	GT31-277	PLUG, DRAIN, OIL
10		GT11-286-22	ASSY,TRACTION WHEEL AND HUB, 22"	2.10	1	1	1	GT31-278	PLUG, OIL
10		GT11-286-26	ASSY, TRACTION WHEEL AND HUB, 26"	2.10	1	1	1	GT31-279	O-RING, PLUG, OIL
		GT11-286-30	ASSY, TRACTION WHEEL AND HUB, 30"	2.11	1	1	1	GT31-279 GT31-287	SEAL, SHAFT, RADIAL
11		GT11-315	ASSY, ARM, BRAKE	2.12	1	1	1	GT31-287-1	SEAL, SHAFT, RADIAL
					1	1	1		
12		GT11-326	PLATE, RETENTION, BEARING, STAND	2.14	4	4	4	GT31-295	SHIM, ECCENTRIC, EDGE BONDED
13		GT11BS-368	RETAINING RING, SPIRAL, MEDIUM DUTY	2.15	1			GT31-301	KEY, SHAFT, WORM
14		GT31OD-005	STAND, OUTBOARD, OD	2.16	20	20	20	1/2"-13 UNC X 1.5"	BOLT, HEX, SERRATED FLANGE, GRADE 5, ZINC-PLA
15		GT31-062-05	SHIM, STAND, OUTBOARD, 0.0050" THK						
		GT31-062-10	SHIM, STAND, OUTBOARD, 0.0100" THK						
4.0		GT31-062-31	SHIM, STAND, OUTBOARD, 0.0310" THK	-					
16		GT31-093	BEARING, ROLLER, SPHERICAL	-					
17		GT31-290	CONDUIT, METAL, FLEXIBLE, 3/8"	-					
18		GT310D-144	SPACER, STAND, OD	-					
19		GT31-291	ADAPTER, FMC, 90 DEG ELBOW, 3/8"	-					
20		GT31-293	ADAPTER, STRAIGHT, FMC, 3/8"	-					
21		GT31-297-1.625	COUPLER, MOTOR, 1.625", 254TC / 256TC FRAME						
		GT31-297-1.875	COUPLER, MOTOR, 1.875", 284TC / 286TC FRAME						
		GT31-297-2.125	COUPLER, MOTOR, 2.125", 324TC / 326TC FRAME						
		GT31-297-2.375	COUPLER, MOTOR, 2.125", 364TC / 365TC FRAME				\ \		
22	1	GT31-298	ELEMENT, COUPLING	_			1		
23		GT31-299	BUSHING, ANTI-SHORT, FEMALE, FMC, 3/8"	-					
24	1	GT11-300	KEY, SHAFT, WHEEL		³¹³¹ 00-0				
25	1	GT31-310	NUT, LOCK, SHAFT	_					
26	1	GT31-311	WASHER, LOCK, SHAFT	_					
27	1	GT31-312	PLATE, ADAPTER, MOTOR, 254TC / 256TC / 284TC / 286TC FRAME						
		GT31-313	PLATE, ADAPTER, MOTOR, 324TC / 326TC / 364TC / 365TC FRAME						
28	1	GT31-314	ASSY, SOLENOID, BRAKE						
29	2	GT31-321	PIN, PIVOT						
30	1	GT31-322	DRUM, BRAKE					Ð	
31	2	GT31-327	ASSY, SWITCH, BRAKE	_					
32	2	GT31OD-335	COLUMN, SUPPORT, ADJUSTABLE						
33	1	GT31-358	ASSY, BLOCK, TERMINAL						
34		P-208	MANUAL BRAKE RELEASE TAG						
35	1	P-226	LABEL, DATA, ELECTRICAL, BRAKE				-17 11 11///		
36	1	P-227	LABEL, INSTRUCTION, BRAKE				Kat No/6/ /	***	
37	1	P-228	LABEL, WIRING, BRAKE						GT11BS-273
38	1	P-230	NAMEPLATE, SMALL, HOLLISTER-WHITNEY						
39	1	P-231	TAG, DATA, MOTOR, CONTRACT						SCALE 1:12
40	1	P-236	MACHINE DATA TAG						//
41	4	#6 - 32 UNC x 7/8"	SCREW, HEX HEAD						
42	4	5/16" - 18 UNC x 3/4"	BOLT, HEX, SERRATED FLANGE, GRADE 5, ZINC-PLATED		A A A A A A A A A A A A A A A A A A A		e.		
43	1	7/16" - 14 UNC x 2-1/4"	SCREW, HEX, CAP, SOCKET HEAD, BLACK OXIDE FINISH				0°°		
44	AS REQ'D	1/2" - 13 UNC x 1-1/2"	BOLT, HEX, SERRATED FLANGE, GRADE 5, ZINC-PLATED						
45	AS REQ'D	1/2" - 13 UNC x 1-1/2"	SCREW, HEX, CAP, FLAT SOCKET HEAD, BLACK OXIDE FINISH						
46	4	5/8" - MS 16624	RING, RETAINING, EXTERNAL, SERIES 3100]		*		IOD-LH	
47	6	5/8" x 1-1/2"	PIN, DOWEL, GROUND, HARDENED	1			SCA	_E 1:12	
		5/8"	LOCK WASHER, HELICAL SPRING, REGULAR	1					
48		5/8" - 11 UNC x 1-1/2"	BOLT, HEX, SERRATED FLANGE, GRADE 5, ZINC-PLATED	1				BINED ALL WHEEL	HOLLISTER-WHITNEY
48 49	AS REQ'D	5/8" - 11 UNC x 3"	HEX CAP SCREW					ATED PARTS LIST, 🕴 D	ELEVATOR CO. LLC
49		רא <i>ס</i> ארו דר - 2/0		4	100 EF	PM 5500-CAP		ED MOTOR DATA 05/	08/23 TITLE
49 50	6	3/4"							
49 50 51	6 28	3/4"	LOCK WASHER, HELICAL SPRING, REGULAR	_	B 22-WH			MOTOR PRINTS,	ASSY, GT110D, LEFT HAND
49 50 51 52	6 28 12	3/4" 3/4" - 10 UNC x 2-1/2"	LOCK WASHER, HELICAL SPRING, REGULAR HEX CAP SCREW, GRADE 5, BLACK OXIDE FINISH	-	B 22-WH CMTR25 THIS DRAWING IS S	IEEL 2:1 WAS 501, PUR #1808 SUPPLIED AS A REPRESENTATION	DRO 3/11/23 TO	MOTOR PRINTS, PUR #1764	
49 50 51	6 28 12 16	3/4"	LOCK WASHER, HELICAL SPRING, REGULAR	-	B 22-WH CMTR25 THIS DRAWING IS 3 HOLLISTER-WHITNEY SUPPLY. SLIGHT AD.	IEEL 2:1 WAS 501, PUR #1808	DRO 3/11/23 TO ON OF THE EQUIPMENT CTURER") HAS AGREED TO NG MANUFACTURING AND	MOTOR PRINTS,	





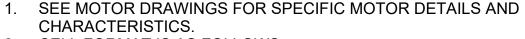

	SCALE	MATERIAL	REF	ERENCE TOL.
	1:20	SEE PARTS LIS		MENSIONS REFERENCE NLESS OTHERWISE SPECIFIED
S	IZE	DATE	G	ST110D-LH
	В	4/25/2023		SHEET 4 OF 10



		2.11 2.10	F			2.8						2.5 2.16 2.7
	S	ECTION	I E-E						SE	CTION F-F		
E	3 22-WHEE	5500-CAP EL 2:1 WAS 1, PUR #1808	DRO 08/11/23		SIZES UPDA MOVE TO M	INED ALL WHEEL S TO ONE PRINT, TED PARTS LIST, ED MOTOR DATA MOTOR PRINTS, PUR #1764	DRO 05/08/23	TITLE	HO	OLLISTER-V ELEVATOR C ASSY, GT110D, L	CO. LL	.C
H(S	MANUFACTURER MAY RELEASE HIS DOCUMENT CONTA AT CANNOT BE REPROD	EVATOR CO. LLC ("MAN TMENTS MAY OCCUR E MODIFICATIONS NOT / AFFECT OPERATION, / S MANUFACTURER OF INS CONFIDENTIAL AND	JFACTURER") H DURING MANUFA APPROVED IN W /OIDS ANY WAR ALL LIABILITY.) PROPRIETARY N WHOLE OR IN	AS AGREE CTURING RITING BY RANTY AN INFORMA PART, WIT	NT ED TO AND ID TION		JECTION	DRAWN BY DRO SHEET S	1:10	MATERIAL SEE PARTS LIS DATE 4/25/2023	ST	REFERENCE TOL. ALL DIMENSIONS REFERENCE UNLESS OTHERWISE SPECIFIED GT110D-LH SHEET 5 OF 10

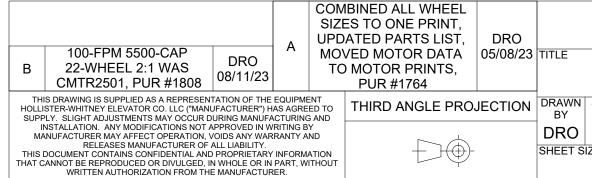
SPEED	(ft/min)	50	75	100	125	150	175	200	250	300	350	400	450	500
CAP (lbs)	SHEAVE SIZE (in)													
		49:1	49:1	49:1	49:1	49:1	49:1	49:2	49:2	49:2	49:2	49:3	49:3	49:3
1000	22	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1505	CMTR1505	CMTR1001	CMTR2001	CMTR3005	CMTR3005	CMTR2001	CMTR3005	CMTR3
		N/A	N/A	IG1MTR1030	IG1MTR1031	IG1MTR1514	N/A	IG1MTR1030	IG1MTR1031	IG1MTR1514	IG1MTR3515	IG3MTR2013	IG3MTR3014	IG1MTR
		49:1	49:1	49:1	49:1	49:1	49:1	49:2	49:2	49:2	49:2	49:3	49:3	49:3
1000	26	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR2501	CMTR2501	CMTR2
		N/A	N/A	IG1MTR1729	IG1MTR1030	IG1MTR1031	N/A	IG1MTR1729	IG1MTR1030	IG3MTR2013	IG1MTR1514	IG1MTR2504	IG3MTR2013	IG3MTR
		49:1	49:1	49:1	49:1	49:1	49:1	49:1	49:2	49:2	49:2	49:2	49:2	49:2
1000	30	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR3005	CMTR3
		N/A	N/A	IG1MTR1729	IG1MTR1030	IG1MTR1031	N/A	IG1MTR1514	IG1MTR1030	IG1MTR2504	IG3MTR2013	IG3MTR3014	IG1MTR3515	IG1MTR
		49:1	49:1	49:1	49:1	49:1	49:1	49:2	49:2	49:2	49:2	49:3	49:3	49:3
1500	22	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1505	CMTR1505	CMTR2001	CMTR2001	CMTR3005	CMTR3005	CMTR2501	CMTR4005	CMTR4
		N/A	N/A	IG1MTR1030	IG1MTR1031	IG1MTR1514	N/A	IG1MTR1030	IG3MTR2013	IG1MTR1514	IG1MTR3515	IG3MTR3013	IG3MTR3014	IG1MTF
		49:1	49:1	49:1	49:1	49:1	49:1	49:2	49:2	49:2	49:2	49:3	49:3	49:3
1500	26	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR3001	CMTR3001	CMTR
		N/A	N/A	IG1MTR1729	IG1MTR1030	IG1MTR1031	N/A	IG1MTR1729	IG3MTR2030	IG3MTR2013	IG3MTR3014	IG1MTR2504	IG3MTR3013	IG3MTF
		49:1	49:1	49:1	49:1	49:1	49:1	49:1	49:2	49:2	49:2	49:2	49:2	49:2
1500	30	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR2001	CMTR4005	CMTR4005	CMTR4
		N/A	N/A	IG1MTR1729	IG1MTR1030	IG1MTR1031	N/A	IG1MTR1514	IG3MTR2030	IG1MTR2504	IG3MTR2013	IG3MTR3014	IG1MTR3515	IG1MTF
		49:1	49:1	49:1	49:1	49:1	49:1	49:2	49:2	49:2	49:2	49:3	49:3	49:3
2000	22	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1505	CMTR1505	CMTR2001	CMTR2001	CMTR3005	CMTR3005	CMTR3001	CMTR4005	CMTR4
		N/A	N/A	IG1MTR1030	IG1MTR1031	IG1MTR1514	N/A	IG3MTR2030	IG3MTR2013	IG3MTR3014	IG1MTR3515	IG3MTR3013	IG3MTR3014	IG1MTF
		49:1	49:1	49:1	49:1	49:1	49:1	49:2	49:2	49:2	49:2	49:3	49:3	49:3
2000	26	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR2001	CMTR3005	CMTR2001	CMTR2501	CMTR2501	CMTR4005	CMTR5001	CMTR5001	CMTR
		N/A	N/A	IG1MTR1729	IG1MTR1030	IG1MTR1031	N/A	IG1MTR1729	IG3MTR2030	IG3MTR2013	IG3MTR3014	IG1MTR2504	IG3MTR3013	IG3MTR
		49:1	49:1	49:1	49:1	49:1	49:1	49:1	49:2	49:2	49:2	49:2	49:2	49:2
2000	30	CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR2501	CMTR2501	CMTR2501	CMTR4005	CMTR4005	CMTR4
		N/A	N/A	IG1MTR1729	IG1MTR1030	IG1MTR1031	N/A			IG1MTR2504		IG3MTR3014	IG1MTR3515	
		49:1	49:1	49:1	49:1	49:1	49:1	49:2	49:2	49:2	49:2			
2500	22	CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR3005	CMTR2001	CMTR2501	CMTR4005	CMTR4005	GT31	GT31	GT3
		N/A	N/A	IG1MTR1030	IG1MTR1031	IG1MTR1514	N/A	IG3MTR2030	IG3MTR2013	IG3MTR3014	IG1MTR3515			
		49:1	49:1	49:1	49:1	49:1	49:1	49:2	49:2	49:2	49:2			
2500	26	CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR2501	CMTR2501	CMTR2501	CMTR4005	GT31	GT31	GT
		N/A	N/A	IG1MTR1729	IG1MTR1030	IG3MTR2013	N/A	IG1MTR1729	IG3MTR2030	IG3MTR3013	IG3MTR3014		0.01	
		49:1	49:1	49:1	49:1	49:1	49:1	49:1	49:2	49:2	49:2			
2500	30	CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR3001	CMTR3001	CMTR3001	GT31	GT31	GT
2000		N/A	N/A	IG1MTR1729	IG1MTR1030	IG1MTR2504	N/A	IG3MTR3014	IG3MTR2030	IG1MTR2504	IG3MTR3013		0.01	
		11/7	11/7	10110111129	1311111030	10 10 11 1 2004	11/7	10011110014	130101112030	13 10/11/2004	1001010			L

1. SEE MOTOR DRAWINGS FOR SPECIFIC MOTOR DETAILS AND CHARACTERISTICS.


2. CELL FORMAT IS AS FOLLOWS:

GEAR RATIO ABB OR WEG MOTOR 49:X 🗡 PART NUMBER IMPERIAL MOTOR **▲**CMTRXXXX PART NUMBER IGXMTRXXXX 🗡

		SIZE UPD	IBINED ALL WHEEL ES TO ONE PRINT, ATED PARTS LIST,	HOLLISTER-WHITNEY ELEVATOR CO. LLC							
В	100-FPM 5500-CAP 22-WHEEL 2:1 WAS CMTR2501, PUR #1808	DRO 08/11/23	А		VED MOTOR DATA MOTOR PRINTS, PUR #1764	05/08/23	TITLE		ASSY, GT110D, L	EFT H	AND
HO SL	HIS DRAWING IS SUPPLIED AS A REPRESEN LISTER-WHITNEY ELEVATOR CO. LLC ("MANU PPLY. SLIGHT ADJUSTMENTS MAY OCCUR D INSTALLATION. ANY MODIFICATIONS NOT A MANUFACTURER MAY AFFECT OPERATION.	JFACTURER") H URING MANUFA APPROVED IN W /OIDS ANY WAR	AS AGREI	ED TO S AND Y		JECTION	DRAWN BY DRO	SCALE I	SEE PARTS LIS	ST	REFERENCE TOL. ALL DIMENSIONS REFERENCE UNLESS OTHERWISE SPECIFIED
	RELEASES MANUFACTORER OF ALL LIABILITY. THIS DOCUMENT CONTAINS CONFIDENTIAL AND PROPRIETARY INFORMATION THAT CANNOT BE REPRODUCED OR DIVULGED, IN WHOLE OR IN PART, WITHOUT WRITTEN AUTHORIZATION FROM THE MANUFACTURER.					SHEET S	IZE B	DATE 4/25/2023		GT110D-LH SHEET 6 OF 10	


	MOTOR CHART 1:1 ROPING													
SPEED	(ft/min)	50	75	100	125	150	175	200	250	300	350	400	450	500
CAP (lbs)	SHEAVE SIZE (in)													
		49:1	49:1	49:1	49:1	49:1	49:1	49:2						
3000	22	CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR3005	CMTR2501	GT31	GT31	GT31	GT31	GT31	GT31
		N/A	N/A	IG1MTR1030	IG3MTR2013	IG1MTR1514	N/A	IG3MTR2030						
		49:1	49:1	49:1	49:1	49:1	49:1	49:2						
3000	26	CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR3001	GT31	GT31	GT31	GT31	GT31	GT31
		N/A	N/A	IG1MTR1729	IG3MTR2030	IG3MTR2013	N/A	IG1MTR1729						
		49:1	49:1	49:1	49:1	49:1	49:1	49:1						
3000	30	CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR3005	GT31	GT31 GT31	GT31	GT31	GT31	GT31
		N/A	N/A	IG1MTR1729	IG3MTR2030	IG1MTR2504	N/A	IG3MTR3014						

2. CELL FORMAT IS AS FOLLOWS:

ABB OR WEG MOTOR PART NUMBER GEAR RATIO 49:X GEAR RATIO IMPERIAL MOTOR PART NUMBER IGXMTRXXXX

HOLLISTER-WHITNEY ELEVATOR CO. LLC

ASSY, GT11OD, LEFT HAND

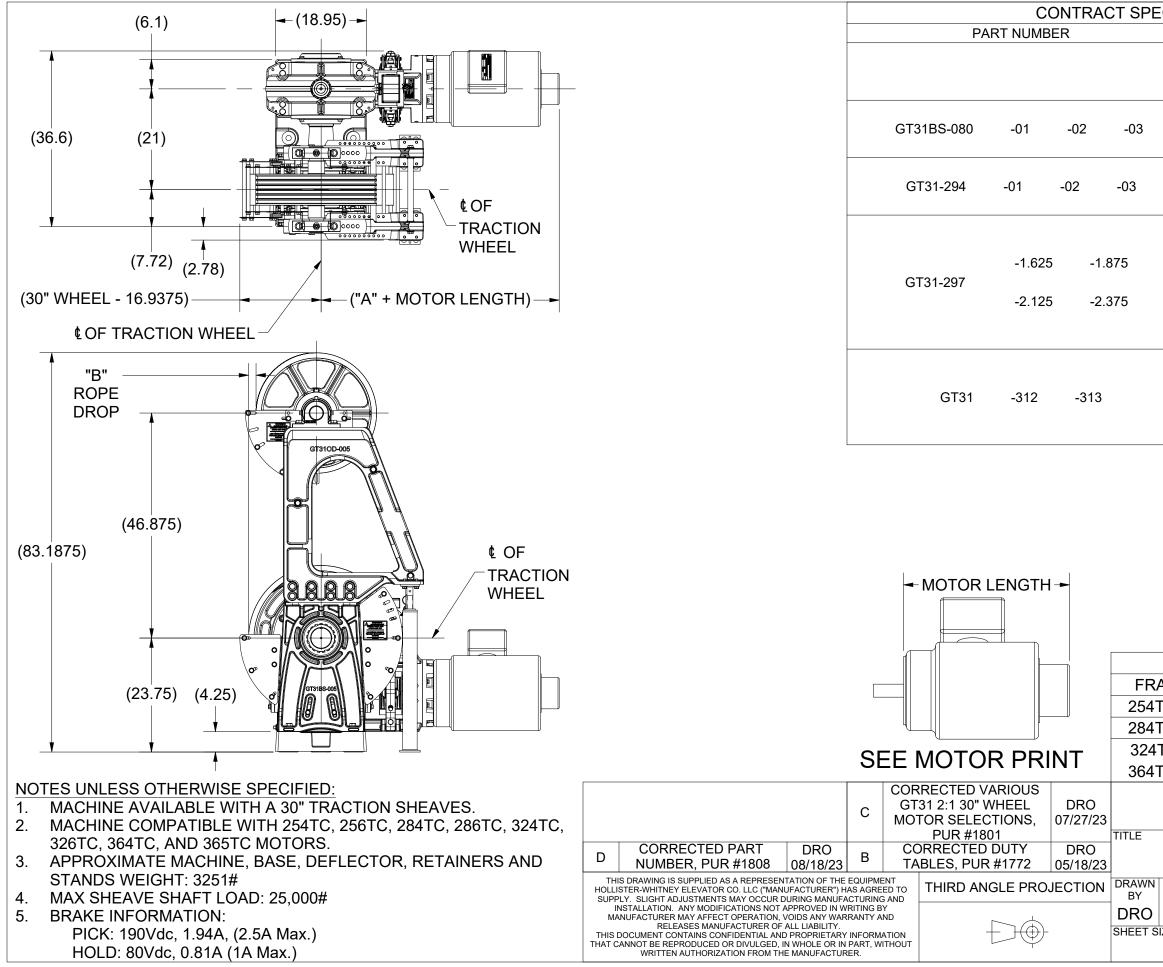
	SCALE	MATERIAL	REFERE	INCE TOL.
		SEE PARTS LIS	UNLESS	ONS REFERENCE OTHERWISE CIFIED
5	IZE	DATE	GT1	10D-LH
	В	4/25/2023	SH	EET 7 OF 10

(ft/min) SHEAVE SIZE (in)	50			CHART 2:1	1		1			
		75	100	125	150	175	200	225	250	
	49:1	49:1	49:2	49:2	49:2	49:2	49:3	49:3	49:3	
22	CMTR1001	CMTR1505	CMTR1001	CMTR1001	CMTR1505	CMTR1505	CMTR1001	CMTR1505	5 CMTR1505	
	IG1MTR1030	N/A	IG1MTR1030	IG1MTR1031	IG1MTR1514	N/A	IG1MTR1514	N/A	IG1MTR3515	
	49:1	49:1	49:2	49:2	49:2	49:2	49:3	49:3	49:3	
26	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1505	CMTR1001	CMTR1001	I CMTR1001	
	IG1MTR1729	N/A	IG1MTR1729	IG1MTR1030	IG1MTR1031	N/A	IG1MTR1031	N/A	IG1MTR1514	
	49:1	49:1	49:1	49:2	49:2	49:2	49:2	49:2	49:2	
30	CMTR1001	CMTR1001	CMTR1505	CMTR1001	CMTR1001	CMTR1001	CMTR1505	CMTR1505	5 CMTR1505	
	IG1MTR1729	N/A	IG1MTR1514	IG1MTR1030	IG1MTR1031	N/A	IG1MTR1514	N/A	IG1MTR3515	
	49:1	49:1	49:2	49:2	49:2	49:2	49:3	49:3	49:3	
22	CMTR1001	CMTR1505	CMTR1001	CMTR1001	CMTR1505	CMTR1505	CMTR1001	CMTR3005	5 CMTR3005	
	IG1MTR1030	N/A	IG1MTR1030	IG1MTR1031	IG1MTR1514	N/A	IG1MTR1514	N/A	IG1MTR3515	
	49:1	49:1	49:2	49:2	49:2	49:2	49:3	49:3	49:3	
26	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1505	CMTR2001	CMTR2001	I CMTR2001	
	IG1MTR1729	N/A	IG1MTR1729	IG1MTR1030	IG1MTR1031	N/A	IG1MTR1031	N/A	IG3MTR2013	
	49:1	49:1	49:1	49:2	49:2	49:2	49:2	49:2	49:2	
30	CMTR1001	CMTR1001	CMTR1505	CMTR1001	CMTR1001	CMTR1001	CMTR1505	CMTR1505	5 CMTR1505	
	IG1MTR1729	N/A	IG1MTR1514	IG1MTR1030	IG1MTR1031	N/A	IG1MTR1514	N/A	IG1MTR3515	
	49:1	49:1	49:2	49:2	49:2	49:2	49:3	49:3	49:3	
22	CMTR1001	CMTR1505	CMTR1001	CMTR1001	CMTR1505	CMTR1505	CMTR2001	CMTR3005	5 CMTR3005	
	IG1MTR1030	N/A	IG1MTR1030	IG1MTR1031	IG1MTR1514	N/A	IG1MTR1514	N/A	IG1MTR3515	
	49:1	49:1	49:2	49:2	49:2	49:2	49:3	49:3	49:3	
26	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1505	CMTR2001	CMTR2001	I CMTR2001	
	IG1MTR1729	N/A	IG1MTR1729	IG1MTR1030	IG1MTR1031	N/A	IG1MTR2504	N/A	IG3MTR2013	
	49:1	49:1	49:1	49:2	49:2	49:2	49:2	49:2	49:2	
30	CMTR1001	CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR3005	5 CMTR3005	
	IG1MTR1729	N/A	IG1MTR1514	IG1MTR1030	IG1MTR1031	N/A	IG1MTR1514	N/A	IG1MTR3515	
	49:1	49:1	49:2	49:2	49:2	49:2	49:3	49:3	49:3	
22	CMTR1001	CMTR1505	CMTR1001	CMTR1001	CMTR3005	CMTR3005	CMTR2001	CMTR3005	5 CMTR3005	
	IG1MTR1030	N/A	IG1MTR1030	IG1MTR1031	IG1MTR1514	N/A	IG3MTR2013	N/A	IG1MTR3515	
	49:1	49:1	49:2	49:2	49:2	49:2	49:3	49:3	49:3	
26	CMTR1001	CMTR1001	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR2001	CMTR2001	I CMTR2001	
	IG1MTR1729	N/A	IG1MTR1729	IG1MTR1030	IG3MTR2013	N/A	IG1MTR2504	N/A	IG3MTR2013	
	49:1	49:1	49:1	49:2	49:2	49:2	49:2	49:2	49:2	
30	CMTR1001	CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR3005	5 CMTR3005	
	IG1MTR1729	N/A	IG1MTR1514	IG1MTR1030	IG1MTR2504	N/A	IG1MTR1514	N/A	IG1MTR3515	
	30 22 26 30 22 26 30 22 20 22	IG1MTR1729 49:1 30 CMTR1001 IG1MTR1729 49:1 22 CMTR1001 IG1MTR1729 49:1 22 CMTR1001 IG1MTR1030 49:1 26 CMTR1001 IG1MTR1729 49:1 30 CMTR1001 IG1MTR1729 49:1 30 CMTR1001 IG1MTR1729 49:1 26 CMTR1001 IG1MTR1729 49:1 26 CMTR1001 IG1MTR1729 49:1 26 CMTR1001 IG1MTR1729 49:1 30 CMTR1001 IG1MTR1729 49:1 30 CMTR1001 IG1MTR1729 49:1 26 CMTR1001 IG1MTR1030 49:1 26 CMTR1001 IG1MTR1030	IG1MTR1729 N/A 49:1 49:1 30 CMTR1001 CMTR1001 IG1MTR1729 N/A 49:1 49:1 22 CMTR1001 CMTR1505 IG1MTR1030 N/A 22 CMTR1001 CMTR1505 IG1MTR1030 N/A 26 CMTR1001 CMTR1001 IG1MTR1729 N/A 30 CMTR1001 CMTR1001 IG1MTR1729 N/A 30 CMTR1001 CMTR1001 IG1MTR1729 N/A 30 CMTR1001 CMTR1505 IG1MTR1030 N/A 49:1 22 CMTR1001 CMTR1001 IG1MTR1729 N/A 49:1 26 CMTR1001 CMTR1001 IG1MTR1729 N/A 49:1 30 CMTR1001 CMTR1001 IG1MTR1729 N/A 49:1 22 CMTR1001 CMTR1001 IG1MTR1729 N/A 49:1	IG1MTR1729 N/A IG1MTR1729 30 49:1 49:1 49:1 30 CMTR1001 CMTR1001 CMTR1505 IG1MTR1729 N/A IG1MTR1514 49:1 49:1 49:2 22 CMTR1001 CMTR1505 CMTR1001 IG1MTR1729 N/A IG1MTR1030 N/A 22 CMTR1001 CMTR1505 CMTR1001 IG1MTR1729 N/A IG1MTR1030 26 CMTR1001 CMTR1001 CMTR1001 IG1MTR1729 N/A IG1MTR1729 30 CMTR1001 CMTR1001 CMTR1001 IG1MTR1729 N/A IG1MTR1514 30 CMTR1001 CMTR1001 CMTR1001 IG1MTR1729 N/A IG1MTR1514 22 CMTR1001 CMTR1505 CMTR1001 IG1MTR1729 N/A IG1MTR1030 22 CMTR1001 CMTR1001 CMTR1001 IG1MTR1729 N/A IG1MTR1729 30	IG1MTR1729 N/A IG1MTR1729 IG1MTR1030 49:1 49:1 49:1 49:2 30 CMTR1001 CMTR1001 CMTR1505 CMTR1001 IG1MTR1729 N/A IG1MTR1514 IG1MTR1030 49:1 49:1 49:2 49:2 22 CMTR1001 CMTR1505 CMTR1001 CMTR1030 IG1MTR1729 N/A IG1MTR1030 IG1MTR1030 IG1MTR1031 49:1 49:1 49:2 49:2 49:2 26 CMTR1001 CMTR1001 CMTR1001 IG1MTR1729 IG1MTR1030 49:1 49:1 49:1 49:2 49:2 30 CMTR1001 CMTR1001 CMTR1001 CMTR1001 IG1MTR1729 N/A IG1MTR1514 IG1MTR1030 49:1 49:1 49:2 49:2 30 CMTR1001 CMTR1001 CMTR1001 CMTR1001 IG1MTR1729 N/A IG1MTR1703 IG1MTR1030 22 CMTR1001 CMTR1	IG1MTR1729 N/A IG1MTR1729 IG1MTR1030 IG1MTR1031 49:1 49:1 49:1 49:1 49:2 49:2 30 CMTR1001 CMTR1001 CMTR1505 CMTR1001 CMTR1001 IG1MTR1729 N/A IG1MTR1514 IG1MTR1030 IG1MTR1031 22 CMTR1001 CMTR1505 CMTR1001 CMTR1505 IG1MTR1030 IG1MTR1030 IG1MTR1030 IG1MTR1031 IG1MTR1514 22 CMTR1001 CMTR1505 CMTR1001 CMTR1001 IG1MTR1030 IG1MTR1514 30 IG1MTR1729 N/A IG1MTR1729 IG1MTR1030 IG1MTR1031 30 CMTR1001 CMTR1001 CMTR1001 CMTR1001 CMTR1001 30 CMTR1001 CMTR1001 CMTR1505 CMTR1001 CMTR1031 49:1 49:1 49:2 49:2 49:2 49:2 22 CMTR1001 CMTR1001 CMTR1001 CMTR1030 IG1MTR1331 30 CMTR1001 CMTR1001 CMTR1001	IG1MTR1729 N/A IG1MTR1729 IG1MTR1030 IG1MTR1031 N/A 49:1 49:1 49:1 49:2 49:2 49:2 30 CMTR1001 CMTR1001 CMTR1001 CMTR1001 CMTR1001 CMTR1001 IG1MTR1330 IG1MTR1031 N/A 30 CMTR1001 CMTR1001 CMTR1001 CMTR1001 CMTR1001 CMTR1031 IG1MTR1031 IG1MTR1031 N/A 22 CMTR1001 CMTR1505 CMTR1001 CMTR1001 CMTR1055 CMTR1055 CMTR1055 CMTR1055 CMTR1055 CMTR1055 CMTR1051 IG1MTR1554 N/A 49:1 49:1 49:1 49:2	IG1MTR1729 N/A IG1MTR1729 IG1MTR1031 N/A IG1MTR1031 49:1 49:1 49:1 49:2 49:2 49:2 49:2 30 CMTR1001 IG1MTR1514 IG1MTR10101 IG1MTR1031 N/A IG1MTR1514 IG1MTR10101 IG1MTR1030 IG1MTR1030 IG1MTR1030 IG1MTR1031 N/A IG1MTR1505 CMTR1001 CMTR1001 CMTR1001 CMTR1001 CMTR1001 IG1MTR1514 IG1MTR10101 CMTR1001 CMTR10	IG1MTR1729 N/A IG1MTR1729 IG1MTR1729 IG1MTR1729 IG1MTR1031 N/A IG1MTR1031 N/A 30 CMTR1001 CMTR1505 CMTR1001 IG1MTR1703 N/A IG1MTR1514 IG1MTR1031 N/A IG1MTR1505 CMTR1001 CMTR1505 CMTR1505 CMTR1505 CMTR1505 CMTR1505 CMTR1505	IG1MTR1729 N/A IG1MTR1729 IG1MTR1729 IG1MTR1031 IG1MTR1031 N/A IG1MTR1031 N/A IG1MTR1031 N/A IG1MTR1514 30 CMTR1001 CMTR1001 CMTR1001 CMTR1001 CMTR1001 CMTR1001 CMTR1005 CMTR1005 CMTR1005 CMTR1505 CMTR1001 CMTR1505 CMTR1001 CMTR1505 CMTR1001 CMTR1505 CMTR2011 CMTR2001 CMTR2001 CMTR2001 CMTR2001 CMTR2001 CMTR2001 CMTR2001 CMTR1505 CMTR1505 CMTR1505 CMTR1505 CMTR2011 CMTR1505 CMTR2011

	ASSY, GT110D, LEFT HAND										
1	DRAWN BY	SCALE				REFERENCE TOL.					
	DRO			SEE PARTS LIS	ST	UNLESS OTHERWISE SPECIFIED					
	SHEET SIZE			ATE		GT110D-LH					
	В			4/25/2023		SHEET 8 OF 10					

HOLLISTER-WHITNEY ELEVATOR CO. LLC

000000	1			1	CHART 2:1	ROPING					
SPEED	(ft/min)	50	75	100	125	150	175	200	225	250	
CAP (lbs)	SHEAVE										
CAF (IDS)	SIZE (in)										
-		49:1	49:1	49:2	49:2	49:2	49:2	49:3	49:3	49:3	
3000	22	CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR3005	CMTR3005	CMTR2001	CMTR3005	5 CMTR3005	
		IG1MTR1030	N/A	IG1MTR1030	IG1MTR1031	IG1MTR1514	N/A	IG3MTR2013	N/A	IG1MTR3515	
		49:1	49:1	49:2	49:2	49:2	49:2	49:3	49:3	49:3	
3000	26	CMTR1001	CMTR1001	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR2501	CMTR2501		
		IG1MTR1729	N/A		IG1MTR1030	IG3MTR2013	N/A	IG1MTR2504	N/A	IG3MTR3013	
		49:1	49:1	49:1	49:2	49:2	49:2	49:2	49:2	49:2	
3000	30	CMTR1001	CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR3005		
3000	50	IG1MTR1729			IG1MTR1030	IG1MTR2504		IG3MTR3014		IG1MTR3515	
			N/A				N/A		N/A		
0500		49:1	49:1	49:2	49:2	49:2	49:2	49:3	49:3	49:3	
3500	22	CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR3005	CMTR3005	CMTR2001	CMTR4005		
		IG1MTR1030	N/A		IG3MTR2013	IG1MTR1514	N/A	IG3MTR2013	N/A	IG1MTR3515	
		49:1	49:1	49:2	49:2	49:2	49:2	49:3	49:3	49:3	
3500	26	CMTR1001	CMTR1001	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR2501	CMTR2501		
		IG1MTR1729	N/A		IG3MTR2030	IG3MTR2013	N/A	IG1MTR2504	N/A	IG3MTR3013	
		49:1	49:1	49:1	49:2	49:2	49:2	49:2	49:2	49:2	
3500	30	CMTR1001	CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR3005	5 CMTR3005	
		IG1MTR1729	N/A	IG1MTR1514	IG3MTR2030	IG1MTR2504	N/A	IG3MTR3014	N/A	IG1MTR3515	
		49:1	49:1	49:2	49:2	49:2	49:2	49:3	49:3	49:3	
4000	22	CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR3005	CMTR3005	CMTR2501	CMTR4005	5 CMTR4005	
		IG1MTR1030	N/A	IG3MTR2030	IG3MTR2013	IG3MTR3014	N/A	IG3MTR3013	N/A	IG1MTR3515	
		49:1	49:1	49:2	49:2	49:2	49:2	49:3	49:3	49:3	
4000	26	CMTR1001	CMTR1001	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR3001	CMTR3001		
		IG1MTR1729	N/A	IG1MTR1729		IG3MTR2013	N/A	IG1MTR2504	N/A	IG3MTR3013	
		49:1	49:1	49:1	49:2	49:2	49:2	49:2	49:2	49:2	
4000	30	CMTR2001	CMTR2001	CMTR3005	CMTR2001	CMTR2501	CMTR2501	CMTR4005	CMTR4005		
4000	00	IG1MTR1729	N/A		IG3MTR2030		N/A	IG3MTR3014	N/A	IG1MTR3515	
		49:1	49:1	49:2	49:2			1031011110014	IN/A	1011011(0010	
4500	22	49.1 CMTR1001	49.1 CMTR1505	49.2 CMTR2001	49.2 CMTR2001	49:2 CMTR3005	GT31	GT31	GT31	GT31	
4000	22				IG3MTR2001		6131	6131	6131	GIST	
		IG1MTR1030	N/A			IG3MTR3014					
4500		49:1	49:1	49:2	49:2	49:2	0704		0T 04		
4500	26	CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR2001	GT31	GT31	GT31	GT31	
		IG1MTR1729	N/A		IG3MTR2030	IG3MTR2013					
		49:1	49:1	49:1	49:2	49:2	-				
4500	30	CMTR2001	CMTR2001	CMTR3005	CMTR2501	CMTR2501	GT31	GT31	GT31	GT31	
		IG1MTR1729	N/A	IG1MTR1514	IG3MTR2030	IG1MTR2504					
		ERWISE SPE								COMBINED ALL W	
		WINGS FOR								SIZES TO ONE PR	
	RACTERISTI						100-FPM 5500)-CAP	- A	JPDATED PARTS MOVED MOTOR D	
		S AS FOLLOV	10.				22-WHEEL 2:1			TO MOTOR PRIN	
	. FURIVIAT IS	AS FULLOW	v3.				MTR2501, PU		1/23	PUR #1764	
								S A REPRESENTATION C			
2. CELL			GE/						ER") HAS ACDEED		
2. CELL ABB OR W		~ 10	./			SUPPLY. S	LIGHT ADJUSTMENTS	CO. LLC ("MANUFACTUR MAY OCCUR DURING M	ANUFACTURING AI		
2. CELL ABB OR W	VEG MOTOR RT NUMBER	49	:X 🗡	IMPERIAL I		SUPPLY. S INSTAL	LIGHT ADJUSTMENTS LATION. ANY MODIFI	MAY OCCUR DURING M CATIONS NOT APPROVE F OPERATION, VOIDS AN	ANÚFACTURING AI D IN WRITING BY Y WARRANTY AND	ND	
2. CELL ABB OR W		49 CMTR	:X 🗡			SUPPLY. S INSTAL MANUFA THIS DOCU	LIGHT ADJUSTMENTS LATION. ANY MODIFI ACTURER MAY AFFEC RELEASES MANU MENT CONTAINS CON	MAY OCCUR DURING M CATIONS NOT APPROVE	ANÚFACTURING AI D IN WRITING BY Y WARRANTY AND LITY. ETARY INFORMATI		

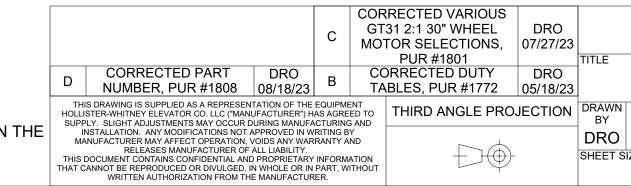

	ASSY, GT110D, LEFT HAND										
1	DRAWN BY	SCALE	MAT	ERIAL		REFERENCE TOL.					
	DRO			SEE PARTS LI	ST	ALL DIMENSIONS REFERENCE UNLESS OTHERWISE SPECIFIED					
	SHEET SIZE			DATE		GT110D-LH					
	B			4/25/2023		SHEET 9 OF 10					

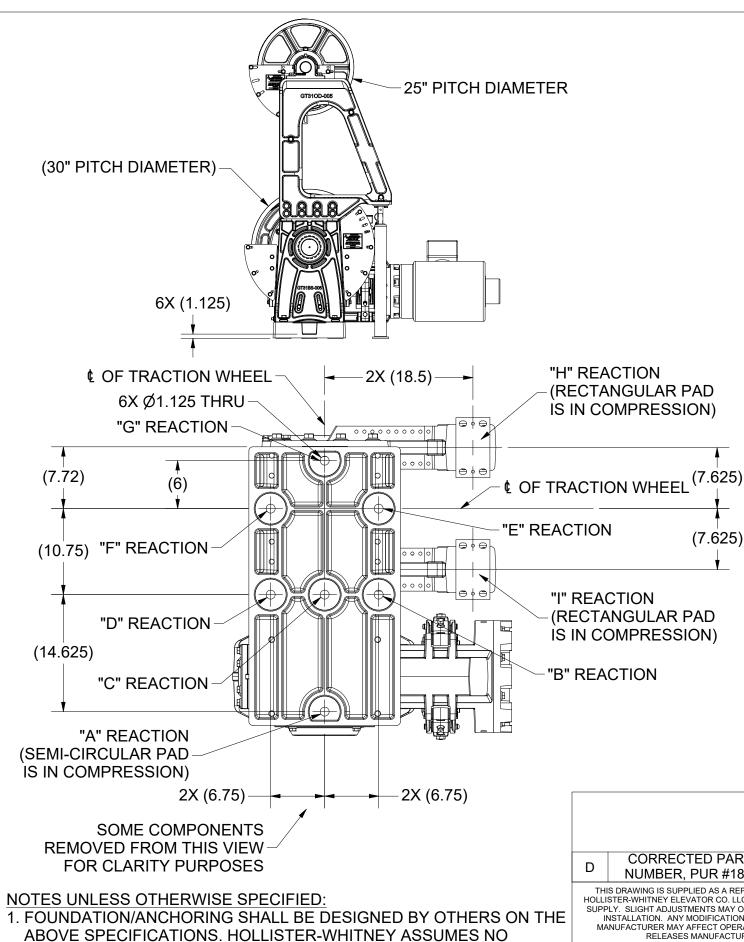
HOLLISTER-WHITNEY ELEVATOR CO. LLC

					CHART 2:1			1				
SPEED CAP (lbs)	(ft/min) SHEAVE SIZE (in)	50	75	100	125	150	175	200	225	250		
5000	22	49:1 CMTR1001 IG1MTR1030	49:1 CMTR1505 N/A	49:2 CMTR2001 IG3MTR2030	49:2 CMTR2001 IG3MTR2013	49:2 CMTR3005 IG3MTR3014	GT31	GT31	GT31	GT31		
5000	26	49:1 CMTR2001 IG1MTR1729	49:1 CMTR2001 N/A	49:2 CMTR2501 IG1MTR1729	49:2 CMTR2501 IG3MTR2030	49:2 CMTR2501 IG3MTR2013	GT31	GT31	GT31	GT31		
5000	30	49:1 CMTR2001 IG1MTR1729	49:1 CMTR2001 N/A	49:1 CMTR3005 IG1MTR1514	49:2 CMTR2501 IG3MTR2030	49:2 CMTR3001 IG1MTR2504	GT31	GT31	GT31	GT31		
5500	22	49:1 CMTR2001 IG1MTR1030	49:1 CMTR3005 N/A	49:2 CMTR2001 IG3MTR2030	GT31	GT31	GT31	GT31	GT31	GT31		
5500	26	49:1 CMTR2001 IG1MTR1729	49:1 CMTR2001 N/A	49:2 CMTR2501 IG1MTR1729	GT31	GT31	GT31	GT31	GT31	GT31		
5500	30	49:1 CMTR2001 IG1MTR1729	49:1 CMTR2001 N/A	49:1 CMTR3005 IG3MTR3014	GT31	GT31	GT31	GT31	GT31	GT31		
6000	22	49:1 CMTR2001 IG1MTR1030	49:1 CMTR3005 N/A	49:2 CMTR2501 IG3MTR2030	GT31	GT31	GT31	GT31	GT31	GT31		
6000	26	49:1 CMTR2001 IG1MTR1729	49:1 CMTR2001 N/A	49:2 CMTR3001 IG1MTR1729	GT31	GT31	GT31	GT31	GT31	GT31		
6000	30	49:1 CMTR2001 IG1MTR1729	49:1 CMTR2001 N/A	49:1 CMTR3005 IG3MTR3014	GT31	GT31	GT31	GT31	GT31	GT31		
1. SEE N CHAR	/OTOR DR/ ACTERIST	I <u>ERWISE SPE</u> AWINGS FOF ICS. 5 AS FOLLOV	R SPECIFIC	MOTOR DET	TAILS AND	В	100-FPM 5500 22-WHEEL 2:1 MTR2501, PUF	WAS DF	A RO 1/23	COMBINED ALL V SIZES TO ONE P UPDATED PARTS MOVED MOTOR TO MOTOR PRI	RINT, LIST, DRO DATA 05/08/23 NTS,	3
	EG MOTOF RT NUMBEF	R 49 CMTF		AR RATIO _IMPERIAL PART NUM		THIS DRA HOLLISTER- SUPPLY. S INSTAL MANUFA THIS DOCUI THAT CANNO	WING IS SUPPLIED AS WHITNEY ELEVATOR LIGHT ADJUSTMENTS LATION. ANY MODIFIC CTURER MAY AFFECT RELEASES MANUF MENT CONTAINS CON	A # 1000 S A REPRESENTATION CO. LLC ("MANUFACTU MAY OCCUR DURING I CATIONS NOT APPROV OPERATION, VOIDS A FACTURER OF ALL LIAE FIDENTIAL AND PROPF FIDENTIAL AND PROPF	OF THE EQUIPMEN RER") HAS AGREE MANUFACTURING J ED IN WRITING BY NY WARRANTY AN BILITY. RIETARY INFORMA' E OR IN PART, WIT			

	ASSY, GT110D, LEFT HAND										
1	DRAWN BY	SCALE	MAT			REFERENCE TOL. ALL DIMENSIONS REFERENCE					
	DRO			SEE PARTS LI	ST	UNLESS OTHERWISE SPECIFIED					
	SHEET SIZE B			DATE 4/25/2023		GT110D-LH SHEET 10 OF 10					
				1/20/2020		SHEET TO OF IU					

HOLLISTER-WHITNEY ELEVATOR CO. LLC

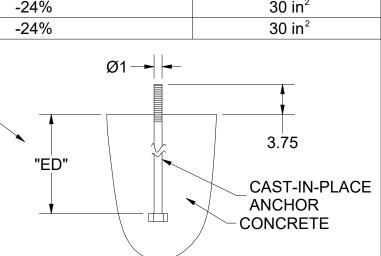

CIFIC PARTS LIST ITEMS DESCRIPTION										
			DES	CRIPTIC	ON					
		ſ	MOTOR, C-FLA	ANGE - F	REFERE	ENCE				
			ASS -01 = 71:1, -0	7, CENT 2 = 71:2		71:3				
			ASSY, WOR -01 = 71:1, -0							
	COUPLER, MOTOR -1.625 = 1.625", 254TC / 256TC FRAME -1.875 = 1.875", 284TC / 286TC FRAME -2.125 = 2.125", 324TC / 326TC FRAME -2.375 = 2.375", 364TC / 365TC FRAME									
	PLATE, ADAPTER, MOTOR -312 = 254TC / 256TC / 284TC / 286TC FRAME -313 = 324TC / 326TC / 364TC / 365TC FRAME									
				1		"B" ROPE DROP DIMENSION 30" WHEEL				
		NS	-			1.5				
AME S			INCHES 21.395			2.5 3.5				
TC / 2			21.635			4.5				
TC /32		+				5.5				
TC / 3	65TC	;	23.125			6.5				
Η	OL		STER-			EY				
	AS	SY,	GT31, LEFT		D, OD					
SCALE		RIAL	N/A		REFERENCE TOL. ALL DIMENSIONS REFERENCE UNLESS OTHERWISE SPECIFIED					
B	C	DATE	5/8/2023		G	T31OD-LH SHEET 1				


	FOL	INDATION BOLT REACTION FORCES			
LOCATION	REACTION TYPE	TO DETERMINE THE LOCATION REACTION FORCE MULTIPLY THE SHEAVE SHAFT LOAD BY THE FOLLOWING % (- SIGN INDICATES FORCE DIRECTION)	TO DETERMINE PSI OF COMPRESSIVE LOAD DIVIDE THE COMPRESSIVE FORCE BY THE FOLLOWING		
"A"	COMPRESSION	-6%	8.6 in ²		
"B"	TENSION	2%	N/A		
"C"	TENSION	TENSION 10%			
"D"	TENSION	29%	N/A		
"E"	TENSION	13%	N/A		
"F"	TENSION	57%	N/A		
"G"	TENSION	47%	N/A		
"H"	COMPRESSION	-24%	30 in ²		
" "	COMPRESSION	-24%	30 in ²		

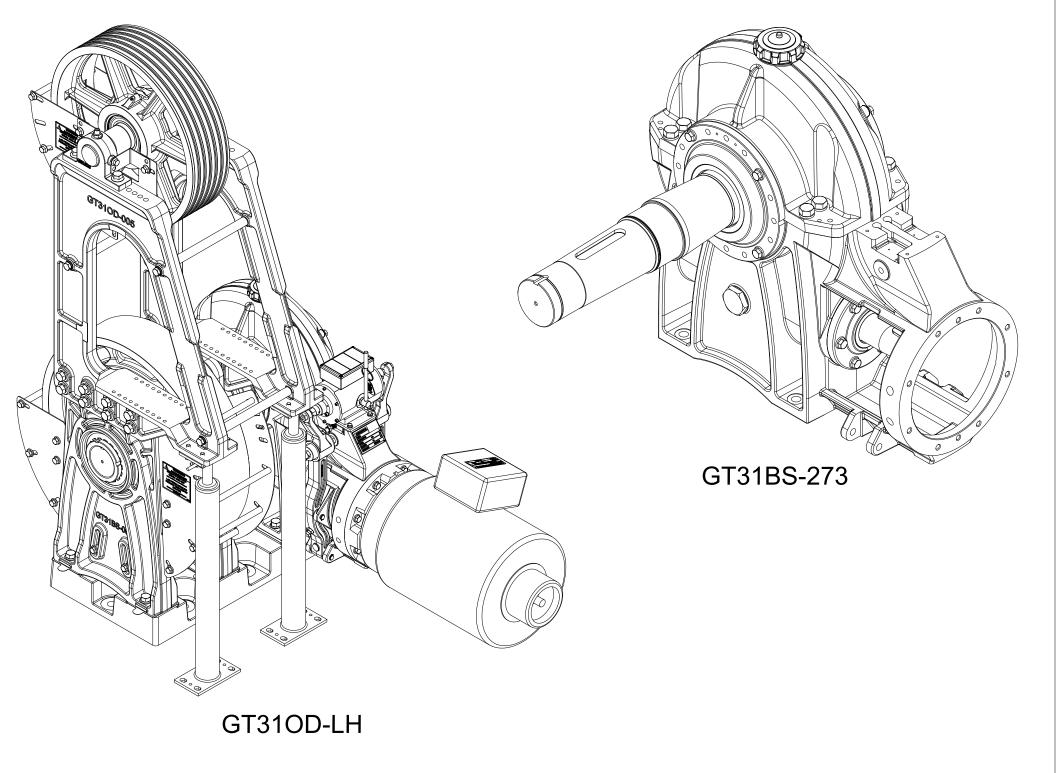
CONCRETE GRADE, CAST-IN-PLACE ANCHOR TYPE. AND EMBEDMENT DEPTH ("ED" DIMENSION) TO BE DETERMINED BY THE STRUCTURAL ENGINEER OF RECORD

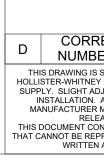
ANCHOR REACTIONS ASSUMPTIONS:

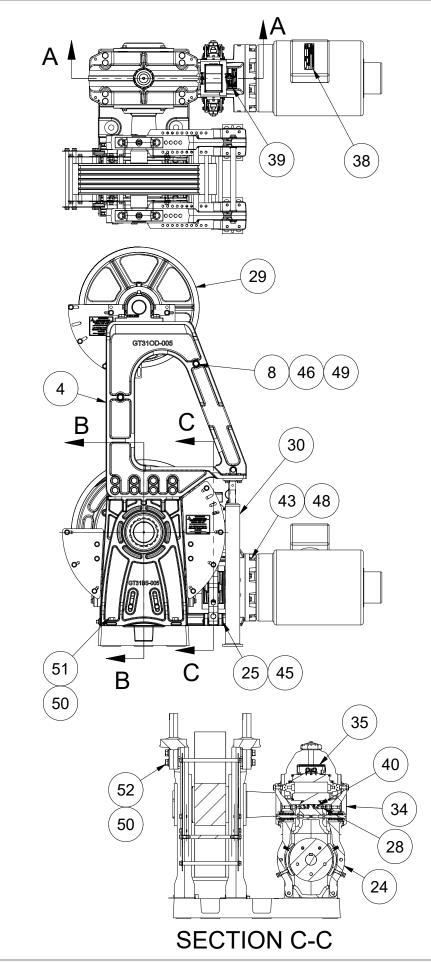
- 1. ALL ANCHOR LOADS ARE APPROXIMATE AND SHOULD BE REVIEWED BY THE BUILDING STRUCTURAL ENGINEER OF RECORD.
- APPROXIMATE ANCHOR LOADS DO NOT INCLUDE ANY LOADING DUE TO A ROPE GRIPPER.
- 3. ONLY THE VERTICAL REACTION COMPONENT IS GIVEN AS AN APPROXIMATE ANCHOR LOAD.
- APPROXIMATE ANCHOR LOADS NEGLECT THE WEIGHT OF THE MACHINE. 4.
- 5. APPROXIMATE ANCHOR LOADS ARE BASED ONLY ON THE TRACTION SHEAVE SHAFT LOAD AND ARE NOT DOUBLED FOR IMPACT OR OTHER SYSTEM CONDITIONS.
- 6. APPROXIMATE ANCHOR LOADS DO NOT ASSUME ANY SEISMIC LOADING CONDITIONS.

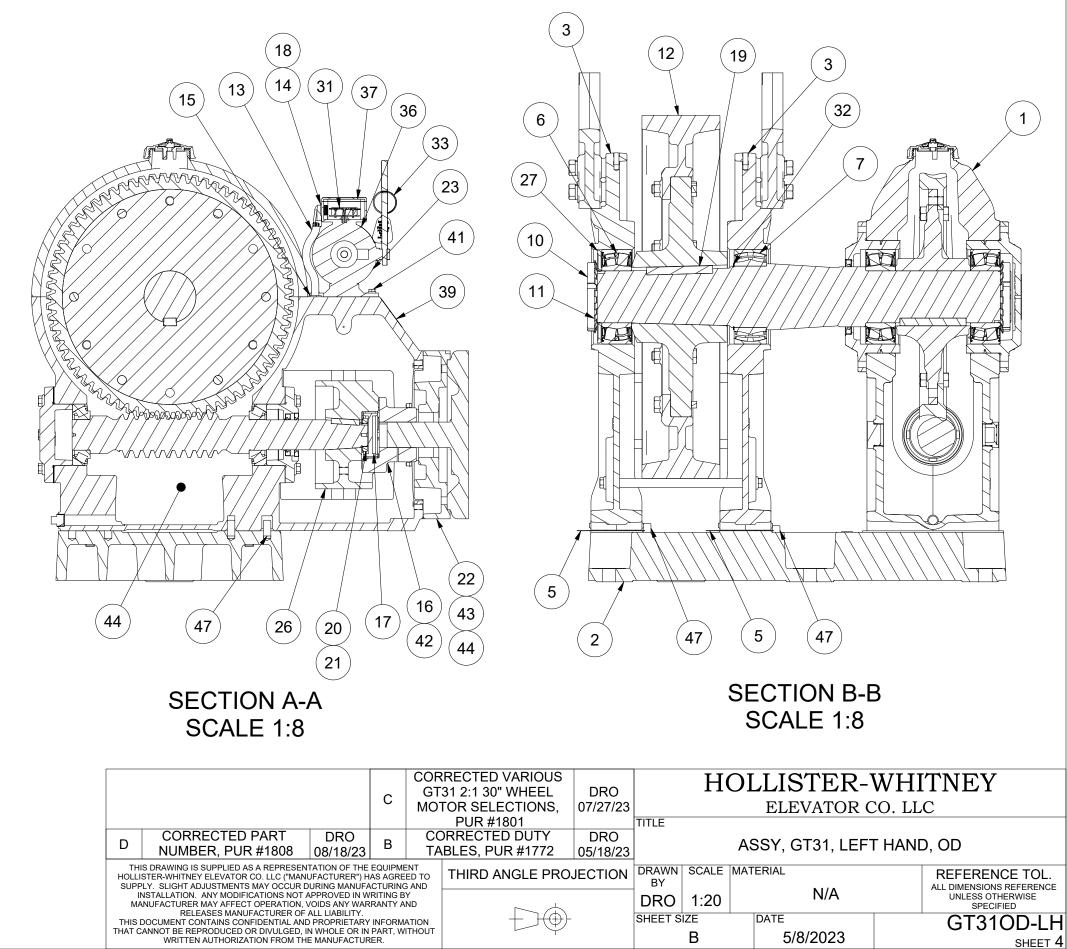


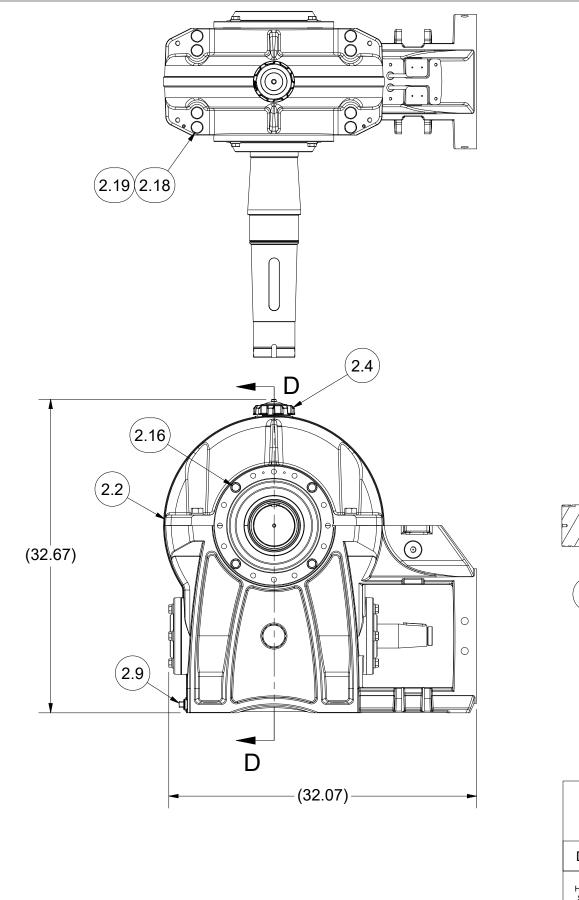
RESPONSIBILITY FOR THE DESIGN OF THE FOUNDATION.

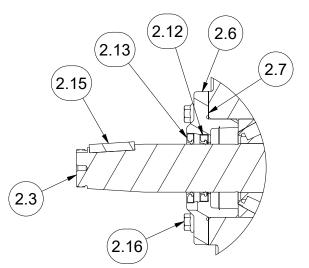

	ASSY, GT31, LEFT HAND, OD											
1	SCALE	MAT	ERIAL		REFERENCE TOL.							
)	1:25		N/A		ALL DIMENSIONS REFERENCE UNLESS OTHERWISE SPECIFIED							
S	IZE		DATE		GT310D-LH							
	В		5/8/2023		SHEET 2							

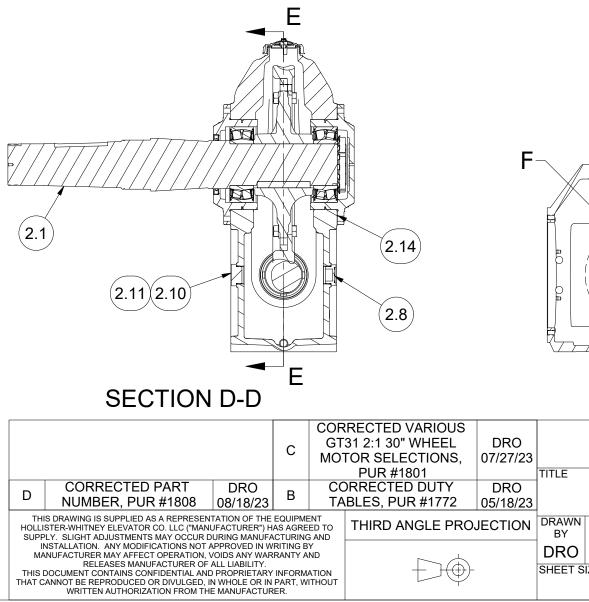

HOLLISTER-WHITNEY ELEVATOR CO. LLC


	ENGINEERING MASTER PARTS LIST							
ITEM	QTY	PART NUMBER	DESCRIPTION					
1	1	GT31BS-273-01	ASSY, GEAR BOX, SINGLE LEAD, 71:1					
		GT31BS-273-02	ASSY, GEAR BOX, DOUBLE LEAD, 71:2					
		GT31BS-273-03	ASSY, GEAR BOX, TRIPLE LEAD, 71:3					
2	1	GT31BS-001	BASE, BS/OD					
3	2	GT31BS-005	STAND, OUTBOARD, BS					
4	2	GT31OD-005	STAND, OUTBOARD, OD					
5	AS REQ'D	GT31-062-05	SHIM, STAND, OUTBOARD, 0.005" THICK					
		GT31-062-01	SHIM, STAND, OUTBOARD, 0.010' THICK					
		GT31-062-31	SHIM, STAND, OUTBOARD, 0.031" THICK					
6	1	GT31-093	BEARING, ROLLER, SPHERICAL					
7	1	GT31-094	BEARING, ROLLER, SPHERICAL					
8	3	GT310D-144	SPACER, STAND, OD					
9	1	GT31OD-250-30	ASSY, RETAINER, ROPE, OD, 30"					
10	1	GT31-282	NUT, LOCK, SHAFT					
11	1	GT31-283	WASHER, LOCK, SHAFT					
12	1	GT31-286-30	ASSY, TRACTION WHEEL AND HUB, 30"					
13	2	GT31-290	CONDUIT, METAL, FLEXIBLE, 3/8"					
14	2	GT31-291	ADAPTER, FMC, 90 DEG ELBOW, 3/8"					
15	2	GT31-293	ADAPTER, STRAIGHT, FMC, 3/8"					
16	1	GT31-297-1.625	COUPLER, MOTOR, 1.625", 254TC / 256TC FRAME					
		GT31-297-1.875	COUPLER, MOTOR, 1.875", 284TC / 286TC FRAME					
		GT31-297-2.125	COUPLER, MOTOR, 2.125", 324TC / 326TC FRAME					
		GT31-297-2.375	COUPLER, MOTOR, 2.375", 364TC / 365TC FRAME					
17	1	GT31-298	ELEMENT, COUPLING					
18	2	GT31-299	BUSHING, ANTI-SHORT, FEMALE, FMC, 3/8"					
19	1	GT31-300	KEY, SHAFT, WHEEL					
20	1	GT31-310	NUT, LOCK, SHAFT					
21	1	GT31-311	WASHER, LOCK, SHAFT					
22	1	GT31-312	PLATE, ADAPTER, MOTOR, 254TC / 256TC / 284TC / 286TC FRAME					
		GT31-313	PLATE, ADAPTER, MOTOR, 324TC / 326TC / 364TC / 365TC FRAME					
23	1	GT31-314	ASSY, SOLENOID, BRAKE					
24	2	GT31-315	ASSY, ARM, BRAKE					
25	2	GT31-321	PIN, PIVOT					
26	1	GT31-322	DRUM, BRAKE					
27	1	GT31-326	PLATE, RETENTION, BEARING, STAND					
28	2	GT31-327	ASSY, SWITCH, BRAKE					
29	1	GT110D-331-027B	ASSY, SHEAVE, DEFLECOR, GT OD MACINE, BALL BEARING, SEALED					
30	2	GT310D-335	COLUMN, SUPPORT, ADJUSTABLE					
31	1	GT31-358	ASSY, BLOCK, TERMINAL					
32	1	GT31BS-368	RETAINING RING, SPIRAL, MEDIUM DUTY					
33	1	P-208	MANUAL BRAKE RELEASE TAG					
34	1	P-223-R	CUSTOMER NAMEPLATE					
35	1	P-226	LABEL, DATA, ELECTRICAL, BRAKE					
36	1	P-227	LABEL, INSTRUCTION, BRAKE					
37	1	P-228	LABEL, WIRING, BRAKE					
38	1	P-231	TAG, DATA, MOTOR, CONTRACT					
39	1	P-236	MACHINE DATA TAG					
40	4	#6-32 UNC X 7/8"	SCREW, HEX HEAD					
41	4	5/16"-18 UNC X 3/4"	BOLT, HEX, SERRATED FLANGE, GRADE 5, ZINC-PLATED					
42	1	7/16"-14 UNC X 2-1/4"	SCREW, HEX, CAP, SOCKET HEAD, BLACK OXIDE FINISH					
43		1/2"-13 UNC X 1-1/2"	BOLT, HEX, SERRATED FLANGE, GRADE 5, ZINC-PLATED					
44		1/2"-13 UNC X 1-1/2"	SCREW, HEX, CAP, FLAT SOCKET HEAD, BLACK OXIDE FINISH					
45	4	5/8" - MS 16624	RING, RETAINING, EXTERNAL, SERIES 3100					
46	6	5/8"	LOCK WASHER, HELICAL SPRING, REGULAR					
47	6	5/8" X 1-1/2"	PIN, DOWEL, GROUND, HARDENED					
48		5/8" - 11 UNC x 1-1/2"	BOLT, HEX, SERRATED FLANGE, GRADE 5, ZINC-PLATED					
49	6	5/8" - 11 UNC x 3"	HEX CAP SCREW					
50	28	3/4"	WASHER, LOCK					
51	12	3/4"-10 UNC X 2-1/2"	BOLT, HEX, GRADE 5, BLACK OXIDE FINISH					
52	16	3/4"-10 UNC X 3"	BOLT, HEX, GRADE 5, BLACK OXIDE FINISH					
53	2.5 gal	MOBIL SHC 636	OIL, GEAR, HIGH PRESSURE					

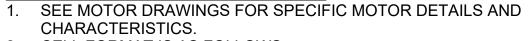

	GT31BS-273 PARTS LIST										
ITEM	QTY GT31BS-273-01	QTY GT31BS-273-02	QTY GT31BS-273-03	PART NUMBER	DESCRIPTION						
2.1	1	0	0	GT31BS-080-01	ASSY, CENTER, SINGLE LEAD						
2.1	0	1	0	GT31BS-080-02	ASSY, CENTER, DOUBLE LEAD						
2.1	0	0	1	GT31BS-080-03	ASSY, CENTER, TRIPLE LEAD						
2.2	1	1	1	GT31-284	ASSY, UPPER AND LOWER HOUSING, MACHINED						
2.3	1	0	0	GT31-294-01	ASSY, WORM SHAFT AND BEARING, 7/8" SINGLE						
2.3	0	1	0	GT31-294-02	ASSY, WORM SHAFT AND BEARING, 7/8" DOUBLE						
2.3	0	0	1	GT31-294-03	ASSY, WORM SHAFT AND BEARING, 7/8" TRIPLE						
2.4	1	1	1	GT31-063	CAP, FILL, OIL						
2.5	1	1	1	GT31-085	CAP, BEARING, REAR END						
2.6	1	1	1	GT31-085-FE	CAP, BEARING, FORWARD END						
2.7	AS REQ'D	AS REQ'D	AS REQ'D	GT31-087	SHIM, CAP, BEARING						
2.8	1	1	1	GT31-276	GLASS, SIGHT, OIL						
2.9	1	1	1	GT31-277	PLUG, DRAIN, OIL						
2.10	1	1	1	GT31-278	PLUG, OIL						
2.11	1	1	1	GT31-279	O-RING, PLUG, OIL						
2.12	1	1	1	GT31-287	SEAL, SHAFT, RADIAL						
2.13	1	1	1	GT31-287-1	SEAL, SHAFT, RADIAL						
2.14	4	4	4	GT31-295	SHIM, ECCENTRIC, EDGE BONDED						
2.15	1	1	1	GT31-301	KEY, SHAFT, WORM						
2.16	20	20	20	1/2"-13 UNC X 1-1/2"	BOLT, HEX, SERRATED FLANGE, GRADE 5, ZINC-PLATED						




				RECTED VARIOU 31 2:1 30" WHEEL	B DRO		H	OLLISTER-	WH	ITNEY	
		С	MO	MOTOR SELECTIONS,		3	ELEVATOR CO. LLC				
				PUR #1801		TITLE					
RECTED PART BER, PUR #1808 (DRO 08/18/23	В		DRRECTED DUTY BLES, PUR #1772	DRO 05/18/2	3		ASSY, GT31, LEF	T HANI	D, OD	
EY ELEVATOR CO. LLC ("MANUF	IS SUPPLIED AS A REPRESENTATION OF THE EQUIPMENT EY ELEVATOR CO. LLC ("MANUFACTURER") HAS AGREED TO ADJUSTMENTS MAY OCCUR DURING MANUFACTURING AND			THIRD ANGLE PF	N DRAWN BY	SCALE	MATERIAL		REFERENCE TOL.		
N. ANY MODIFICATIONS NOT APP ER MAY AFFECT OPERATION, VO	DIDS ANY WAR				\	DRO	1:12	N/A		UNLESS OTHERWISE SPECIFIED	
EASES MANUFACTURER OF ALL LIABILITY. ONTAINS CONFIDENTIAL AND PROPRIETARY INFOR PRODUCED OR DIVULGED, IN WHOLE OR IN PART,					})-	SHEET S	SIZE	DATE 5/8/2023		GT310D-LH	
EN AUTHORIZATION FROM THE N	MANUFACIURI	ER.					U	5/0/2025		SHEET 3	



Page 57


DETAIL F

	SCONWWWW O		
			//~~//
ET /			
			2.7
	SECTION E-E	-	
H	OLLISTER-' ELEVATOR C		
	ASSY, GT31, LEFT		
SCALE	MATERIAL		REFERENCE TOL. ALL DIMENSIONS REFERENCE UNLESS OTHERWISE SPECIFIED
B	date 5/8/2023		GT310D-LH SHEET 5
			Page 5

					Ν	10TOR CHAR	T 1:1 ROPIN	G						
SPEED	(ft/min)	50	75	100	125	150	175	200	250	300	350	400	450	500
CAP (lbs)	SHEAVE SIZE (in)													
		71:1	71:1	71:1	71:1	71:1	71:2	71:2	71:2	71:2	71:3	71:3	71:3	71:3
2000	30	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR2501	CMTR2501	CMTR4005	CMTR4005
		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	IG3MTR3014	IG3MTR3013	IG3MTR3013	IG3MTR3014	IG1MTR351
		71:1	71:1	71:1	71:1	71:1	71:2	71:2	71:2	71:2	71:3	71:3	71:3	71:3
2500	30	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR3005	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR3001	CMTR3001	CMTR5005	CMTR5005
		N/A	N/A	N/A	N/A	N/A	N/A	N/A	IG3MTR2013	IG3MTR3014	IG3MTR3013	IIG3MTR301	IG3MTR5014	IG3MTR501
		71:1	71:1	71:1	71:1	71:1	71:2	71:2	71:2	71:2	71:3	71:3	71:3	71:3
3000	30	CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR2501	CMTR2501	CMTR2501	CMTR4005	CMTR5001	CMTR5001	CMTR5005	CMTR5005
		N/A	N/A	IG1MTR1030	IG1MTR1514	IG1MTR1514	N/A	IG1MTR2504	IG3MTR3013	IG3MTR3014	IG3MTR3013	IG3MTR5013	IG3MTR5014	IG3MTR501
		71:1	71:1	71:1	71:1	71:1	71:2	71:2	71:2	71:2	71:3	71:3	71:3	71:3
3500	30	CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR2501	CMTR2501	CMTR3001	CMTR4005	CMTR5001	CMTR5001	CMTR6005	CMTR6005
		N/A	N/A	IG3MTR2030	IG3MTR2013	IG3MTR3014	N/A	IG1MTR2504	IG3MTR3013	IG3MTR3014	IG3MTR5013	IG3MTR5013	IG3MTR5014	IG3MTR501
		71:1	71:1	71:1	71:1	71:1	71:2	71:2	71:2	71:2	71:3	71:3	71:3 N/A	
4000	30	CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR3001	CMTR3001	CMTR3001	CMTR5005	CMTR5001	CMTR5001	IG3MTR5014	N/A
		N/A	N/A	IG3MTR2030	IG3MTR2013	IG3MTR3014	N/A	IG1MTR2504	IG3MTR3013	IG3MTR5014	IG3MTR5013	IG3MTR5013	1031011113014	
		71:1	71:1	71:1	71:1	71:1	71:2	71:2	71:2	71:2	71:3	71:3		
4500	30	CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR3001	CMTR3001	CMTR5001	CMTR5005	CMTR5001	CMTR5001	N/A	N/A
		N/A	N/A	IG3MTR2030	IG3MTR2013	IG3MTR3014	N/A	IG1MTR2504	IG3MTR3013	IG3MTR5014	IG3MTR5013	IG3MTR5013		

2. CELL FORMAT IS AS FOLLOWS:

GEAR RATIO ABB OR WEG MOTOR 49:X 🗡 PART NUMBER IMPERIAL MOTOR **CMTRXXXX** PART NUMBER IGXMTRXXXX 🗡

			0		RECTED VARIOUS 31 2:1 30" WHEEL	DRO		H	OLLISTER-V	WHI	TNEY
		MO	DTOR SELECTIONS, 07/27/23						C		
					PUR #1801		TITLE				
п	CORRECTED PART	DRO	в		RRECTED DUTY	DRO			ASSY, GT31, LEFT	μαλιγ	
	NUMBER, PUR #1808	08/18/23	D	TA	BLES, PUR #1772	05/18/23			A331, 0131, LLI 1	IIANL	J, OD
HOLLIS	S DRAWING IS SUPPLIED AS A REPRESEN STER-WHITNEY ELEVATOR CO. LLC ("MAN LY. SLIGHT ADJUSTMENTS MAY OCCUR E	UFACTURER") HA	AS AGREE	ED TO	THIRD ANGLE PRO	IECTION	DRAWN BY	SCALE	MATERIAL		REFERENCE TOL.
IN	ISTALLATION. ANY MODIFICATIONS NOT A NUFACTURER MAY AFFECT OPERATION, Y	APPROVED IN WI VOIDS ANY WARI	RITING BY	Y	\sim		DRO		N/A		UNLESS OTHERWISE SPECIFIED
	RELEASES MANUFACTURER OF OCUMENT CONTAINS CONFIDENTIAL AND	D PROPRIETARY			$+ \mathcal{F}(\Phi)$		SHEET S	IZE	DATE		GT310D-LH
THAT CA	ANNOT BE REPRODUCED OR DIVULGED, I WRITTEN AUTHORIZATION FROM TH			THOUT	Ý			В	5/8/2023		SHEET 6

SPEED	(ft/min)	50	75	100	125	150	175	200	225	250
CAP (lbs)	SHEAVE SIZE (in)									
		71:1	71:1	71:2	71:2	71:2	71:3	71:3	71:3	71:3
2500	30	CMTR1001	CMTR1505	CMTR1001	CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR3005	CMTR300
		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		71:1	71:1	71:2	71:2	71:2	71:3	71:3	71:3	71:3
3000	30	CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR3005	CMTR2001	CMTR2001	CMTR3005	CMTR300
		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		71:1	71:1	71:2	71:2	71:2	71:3	71:3	71:3	71:3
3500	30	CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR3005	CMTR2001	CMTR2001	CMTR3005	CMTR30
		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		71:1	71:1	71:2	71:2	71:2	71:3	71:3	71:3	71:3
4000	30	CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR3005	CMTR2501	CMTR2501	CMTR4005	CMTR4
		N/A	N/A	N/A	IG1MTR1514	IG3MTR3014	N/A	IG3MTR3013	N/A	N/A
		71:1	71:1	71:2	71:2	71:2	71:3	71:3	71:3	71:3
4500	30	CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR3005	CMTR2501	CMTR2501	CMTR4005	CMTR4
		N/A	N/A	N/A	IG3MTR2013	IG3MTR3014	N/A	IG3MTR3013	N/A	N/A
		71:1	71:1	71:2	71:2	71:2	71:3	71:3	71:3	71:3
5000	30	CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR3005	CMTR3001	CMTR3001	CMTR4005	CMTR4
		N/A	N/A	IG1MTR2504	IG3MTR2013	IG3MTR3014	N/A	IG3MTR3013	N/A	IG1MTF
		71:1	71:1	71:2	71:2	71:2	71:3	71:3	71:3	71:3
5500	30	CMTR2001	CMTR3005	CMTR2001	CMTR2001	CMTR3005	CMTR3001	CMTR3001	CMTR5005	CMTR5
		N/A	N/A	IG1MTR2504	IG3MTR2013	IG3MTR3014	N/A	IG3MTR3013	N/A	IG3MTF
		71:1	71:1	71:2	71:2	71:2	71:3	71:3	71:3	71:
6000	30	CMTR2001	CMTR3005	CMTR2001	CMTR2001	CMTR4005	CMTR3001	CMTR3001	CMTR5005	CMTR
		N/A	N/A	IG1MTR2504	IG3MTR2013	IG3MTR3014	N/A	IG3MTR5013	N/A	IG3MTF
		71:1	71:1	71:2	71:2	71:2	71:3	71:3	71:3	71:3
7000	30	CMTR2001	CMTR3005	CMTR2501	CMTR2501	CMTR4005	CMTR5001	CMTR5001	CMTR6005	CMTR6
		IG3MTR2030	N/A	IG1MTR2504	IG3MTR3013	IG3MTR3014	N/A	IG3MTR5013	N/A	IG3MTF
		71:1	71:1	71:2	71:2	71:2	71:3	71:3		
8000	30	CMTR2001	CMTR3005	CMTR3001	CMTR3001	CMTR4005	CMTR5001	CMTR5001	N/A	N/A
		IG3MTR2030	N/A	IG1MTR2504	IG3MTR3013	IG3MTR5014	N/A	IG3MTR5013		
		71:1	71:1	71:2	71:2	71:2	71:3	71:3		
9000	30	CMTR2001	CMTR3005	CMTR3001	CMTR3001	CMTR5005	CMTR5001	CMTR5001	N/A	N/A
		IG3MTR2030	N/A	IG1MTR2504	IG3MTR3013	IG3MTR5014	N/A	IG3MTR5013		

NOTES UNLESS OTHERWISE SPECIFIED:

- 1. SEE MOTOR DRAWINGS FOR SPECIFIC MOTOR DETAILS AND CHARACTERISTICS.
- 2. CELL FORMAT IS AS FOLLOWS:

GEAR RATIO ABB OR WEG MOTOR 49:X 🗡 PART NUMBER IMPERIAL MOTOR **▲**CMTRXXXX PART NUMBER IGXMTRXXXX 🗡

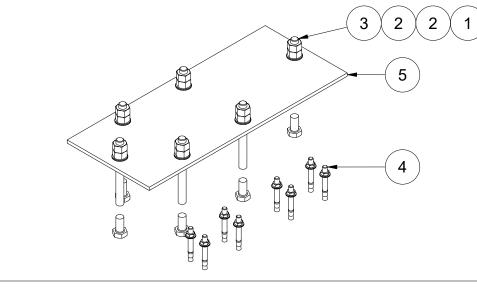
	с	CORRECTED GT31 2:1 30	" WHEEL	DRO		HC	DLLISTER-V		
		MOTOR SEL PUR #	,	07/27/23	TITLE		ELEVATOR C	O. LL	C
D CORRECTED PART DRO NUMBER, PUR #1808 08/18/23	В	CORRECTE TABLES, PI	ED DUTY	DRO 05/18/23			ASSY, GT31, LEFT	HANE	D, OD
HOLLISTER-WHITNEY ELEVATOR CO. LLC ("MANUFACTURER") HA SUPPLY. SLIGHT ADJUSTMENTS MAY OCCUR DURING MANUFAC	THIS DRAWING IS SUPPLIED AS A REPRESENTATION OF THE EQUIPMENT HOLLISTER-WHITNEY ELEVATOR CO. LLC ("MANUFACTURER") HAS AGREED TO SUPPLY, SLIGHT ADJUSTMENTS MAY OCCUR DURING MANUFACTURING AND		THIRD ANGLE PROJECTION		DRAWN BY	SCALE	MATERIAL		REFERENCE TOL. ALL DIMENSIONS REFERENCE
INSTALLATION. ANY MODIFICATIONS NOT APPROVED IN WR MANUFACTURER MAY AFFECT OPERATION, VOIDS ANY WARR			\sim		DRO		N/A		UNLESS OTHERWISE SPECIFIED
RELEASES MANUFACTURER OF ALL LIABILITY. THIS DOCUMENT CONTAINS CONFIDENTIAL AND PROPRIETARY I THAT CANNOT BE REPRODUCED OR DIVULGED, IN WHOLE OR IN F			$+)\oplus$		SHEET S		DATE		GT310D-LH
WRITTEN AUTHORIZATION FROM THE MANUFACTURE			I			В	5/8/2023		SHEET 7

FOUNDATION BOLT REACTION FORCES								
LOCATION	REACTION TYPE	COMPRESSIVE LOAD						
LOCATION	REACTION TIPE	LOAD	AREA					
"A"	COMPRESSION	-680 POUNDS	12.6 in ²					
"B"	TENSION	1190 POUNDS	N/A					
"C"	TENSION	5780 POUNDS	N/A					
"D"	TENSION	2550 POUNDS	N/A					
"E"	TENSION	8330 POUNDS	N/A					
"F"	TENSION	10030 POUNDS	N/A					
"G"	COMPRESSION	-4590 POUNDS	30 in ²					
"H"	COMPRESSION	-4590 POUNDS	30 in ²					

ITEM QTY PART NUMBER 6 GT11BS-156-1 1 2 12 GT11BS-156-2 3 6 GT31BS-156-3 4 8 GT110D-156-3 5 GT110D-180 MACHINE TEMPLATE 1

RELEASES MANUFACTURER OF ALL LIABILITY.

THIS DOCUMENT CONTAINS CONFIDENTIAL AND PROPRIETARY INFORMATION THAT CANNOT BE REPRODUCED OR DIVULGED, IN WHOLE OR IN PART, WITHOUT WRITTEN AUTHORIZATION FROM THE MANUFACTURER.


PARTS LIST DESCRIPTION 1", FLAT WASHER, ASTM F436, TYPE 1 HARDEDNED, GALVANIZED 1" - 8 UNC, HEX NUT, HEAVY, ASTM A194, GRADE 2H, GALVANIZED 1" - 8 UNC x 25", HEX BOLT, HEAVY, ASTM F1554, GRADE 55, GALVANIZED 5/8" - 11 UNC x 5", WEDGE EXPANSION ANCHOR "A" REACTION (SEMI-CIRCULAR PAD € OF TRACTION IS IN COMPRESSION) WHEEL "H" REACTION 'B" REACTION "C" REACTION (RECTANGULAR PAD 25.125 IN COMPRESSION) 10.75 7.625 5.75 "E" REACTION 2X 2.5 7.625 2X 1.25 **"F" REACTION** "G" REACTION (RECTANGULAR PAD 5.25 5.25 IN COMPRESSION) 18.625 "D" REACTION 2X 3 1 2X 6 曲 DETAIL A **SCALE 1:6** 21" EMBEDMENT DEPTH 6" MIN EDGE DISTANCE WEIGHT: 50.7 lbmass HOLLISTER-WHITNEY ELEVATOR CO. LLC TITLE PRODUCTION RELEASE, DRO А FOUNDATION ANCHOR ASSEMBLY PUR #1616 05/17/22 THIS DRAWING IS SUPPLIED AS A REPRESENTATION OF THE EQUIPMENT DRAWN THIRD ANGLE PROJECTION HOLLISTER-WHITNEY ELEVATOR CO. LLC ("MANUFACTURER") HAS AGREED TO SUPPLY. SLIGHT ADJUSTMENTS MAY OCCUR DURING MANUFACTURING AND ΒY INSTALLATION. ANY MODIFICATIONS NOT APPROVED IN WRITING BY DRO MANUFACTURER MAY AFFECT OPERATION. VOIDS ANY WARRANTY AND

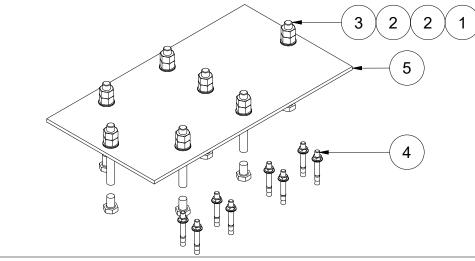
ANCHOR AND FOUNDATION NOTES:

- 1. THE FINAL FOUNDATION AND ANCHORING EMBEDMENT METHOD FOR THIS EQUIPMENT SHALL BE DESIGNED BY THE STRUCTURAL ENGINEER OF RECORD BASED ON THE LOADS AND LOCATIONS PROVIDED ON THIS SHEET. HOLLISTER-WHITNEY ASSUMES NO RESPONSIBILITY FOR THE DESIGN OF THE FOUNDATION OR THE METHOD OF THE ANCHORING EMBEDMENT.
- 2. ALL ANCHOR LOADS SHOWN IN THE TABLE ABOVE ARE SERVICE LOADS BASED ON THE OVERALL UPWARD PLUMB VERTICAL LOAD RESULTING FROM A 17,000 POUND SHEAVE SHAFT LOAD WITH A 30 INCH TRACTION WHEEL AND 1.5 INCHES OF ROPE OFFSET. FOR ANCHOR DESIGN, THESE LOADS SHALL BE DOUBLED PER SECTION 2.9.2.2 OF ASME A17.1, SAFETY CODE FOR ELEVATORS. THEY SHALL ALSO BE FACTORED ACCORDINGLY FOR ANCHOR DESIGN PER ACI 318.
- 3. THE WEIGHT OF THE MACHINE HAS NOT BEEN INCLUDED IN THE ANCHOR LOADS.
- 4. THE ANCHOR ROD SIZE, GRADE, AND EMBEDMENT DEPTH SHOWN ARE BASED ON THE FOLLOWING DESIGN ASSUMPTIONS:
 - -CONCRETE STRENGTH = 4000PSI
 - -UN-CRACKED CONCRETE
 - -UN-REINFORCED CONCRETE
 - -6" EDGE DISTANCE IN THE ONE DIRECTION INDICATED.

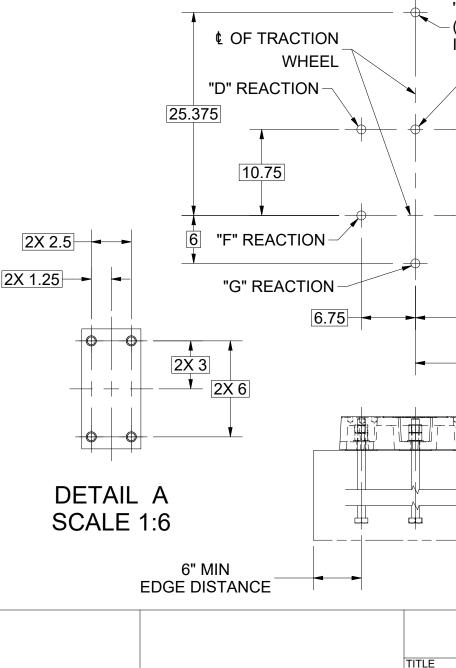
-EDGE DISTANCE IN THE OTHER DIRECTIONS HAS NOT BEEN ACCOUNTED FOR

5. LEFT HAND MACHINE CONFIGURATION SHOWN.

-				
	DRAWN	SCALE	MATERIAL	REFERENCE TOL.
	BY			
	DRO	1:12	SEE PARTS LI	SI UNLESS OTHERWISE SPECIFIED
	SHEET SIZE		DATE	GT110D-156
		В	2/8/2022	SHEET 1 OF 1


	FOUNDATION	BOLT REACTION FORCE	S						
LOCATION	REACTION TYPE	30" WHEEL SERVICE	COMPRESSIVE LOAD						
LUCATION	REACTION TYPE	LOAD	AREA						
"A"	COMPRESSION	-1500 POUNDS	8.6 in ²						
"B"	TENSION	500 POUNDS	N/A						
"C"	TENSION	2500 POUNDS	N/A						
"D"	TENSION	7250 POUNDS	N/A						
"E"	TENSION	3250 POUNDS	N/A						
"F"	TENSION	14250 POUNDS	N/A	1					
"G"	TENSION	11750 POUNDS	N/A						
"H"	COMPRESSION	-6000 POUNDS	30 in ²						
" "	COMPRESSION	-6000 POUNDS	30 in ²						

ANCHOR AND FOUNDATION NOTES:


- 1. THE FINAL FOUNDATION AND ANCHORING EMBEDMENT METHOD FOR THIS EQUIPMENT SHALL BE DESIGNED BY THE STRUCTURAL ENGINEER OF RECORD BASED ON THE LOADS AND LOCATIONS PROVIDED ON THIS SHEET. HOLLISTER-WHITNEY ASSUMES NO RESPONSIBILITY FOR THE DESIGN OF THE FOUNDATION OR THE METHOD OF THE ANCHORING EMBEDMENT.
- 2. ALL ANCHOR LOADS SHOWN IN THE TABLE ABOVE ARE SERVICE LOADS BASED ON THE OVERALL UPWARD PLUMB VERTICAL LOAD RESULTING FROM A 25,000 POUND SHEAVE SHAFT LOAD WITH A 30 INCH TRACTION WHEEL AND 1.5 INCHES OF ROPE OFFSET. FOR ANCHOR DESIGN, THESE LOADS SHALL BE DOUBLED PER SECTION 2.9.2.2 OF ASME A17.1, SAFETY CODE FOR ELEVATORS. THEY SHALL ALSO BE FACTORED ACCORDINGLY FOR ANCHOR DESIGN PER ACI 318.
- 3. THE WEIGHT OF THE MACHINE HAS NOT BEEN INCLUDED IN THE ANCHOR LOADS.
- 4. THE ANCHOR ROD SIZE, GRADE, AND EMBEDMENT DEPTH SHOWN ARE BASED ON THE FOLLOWING DESIGN ASSUMPTIONS:
 - -CONCRETE STRENGTH = 4000PSI
 - -UN-CRACKED CONCRETE
 - -UN-REINFORCED CONCRETE
 - -6" EDGE DISTANCE IN THE ONE DIRECTION INDICATED.

-EDGE DISTANCE IN THE OTHER DIRECTIONS HAS NOT BEEN ACCOUNTED FOR.

5. LEFT HAND MACHINE CONFIGURATION SHOWN.

			PARTS LIST
ITEM	QTY	PART NUMBER	
1	7	GT11BS-156-1	1", FLAT WASHER, ASTM F43
2	14	GT11BS-156-2	1" - 8 UNC, HEX NUT, HEAVY
3	7	GT31OD-156-3	1" - 8 UNC x 29", HEX BOLT, I
4	8	GT110D-156-3	5/8" - 11 UNC x 5", WEDGE E
5	1	GT31OD-180	MACHINE TEMPLATE

PRODUCTION RELEASE,

PUR #1616

THIRD ANGLE PROJECTION

А

THIS DRAWING IS SUPPLIED AS A REPRESENTATION OF THE EQUIPMENT

HOLLISTER-WHITNEY ELEVATOR CO. LLC ("MANUFACTURER") HAS AGREED TO SUPPLY. SLIGHT ADJUSTMENTS MAY OCCUR DURING MANUFACTURING AND

INSTALLATION. ANY MODIFICATIONS NOT APPROVED IN WRITING BY

MANUFACTURER MAY AFFECT OPERATION. VOIDS ANY WARRANTY AND

THIS DOCUMENT CONTAINS CONFIDENTIAL AND PROPRIETARY INFORMATION THAT CANNOT BE REPRODUCED OR DIVULGED, IN WHOLE OR IN PART, WITHOUT

WRITTEN AUTHORIZATION FROM THE MANUFACTURER.

RELEASES MANUFACTURER OF ALL LIABILITY.

DRO

05/17/22

ΒY

В

2/9/2022

DESCRIPTION 36, TYPE 1 HARDEDNED, GALVANIZED Y, ASTM A194, GRADE 2H, GALVANIZED HEAVY, ASTM F1554, GRADE 105, GALVANIZED EXPANSION ANCHOR "A" REACTION (SEMI-CIRCULAR PAD IS IN COMPRESSION) "C" REACTION **"I" REACTION** "B" REACTION (RECTANGULAR PAD IN COMPRESSION) 7.625 7.625 "H" REACTION (RECTANGULAR PAD 6.75 IN COMPRESSION) "E" REACTION 18.625 25" EMBEDMENT DEPTH WEIGHT: 65.4 lbmass HOLLISTER-WHITNEY ELEVATOR CO. LLC FOUNDATION ANCHOR ASSEMBLY DRAWN | SCALE | MATERIAL REFERENCE TOL ALL DIMENSIONS REFERENCE SEE PARTS LIST UNLESS OTHERWISE DRO 1:12 SPECIFIED SHEET SIZE DATE GT310D-156

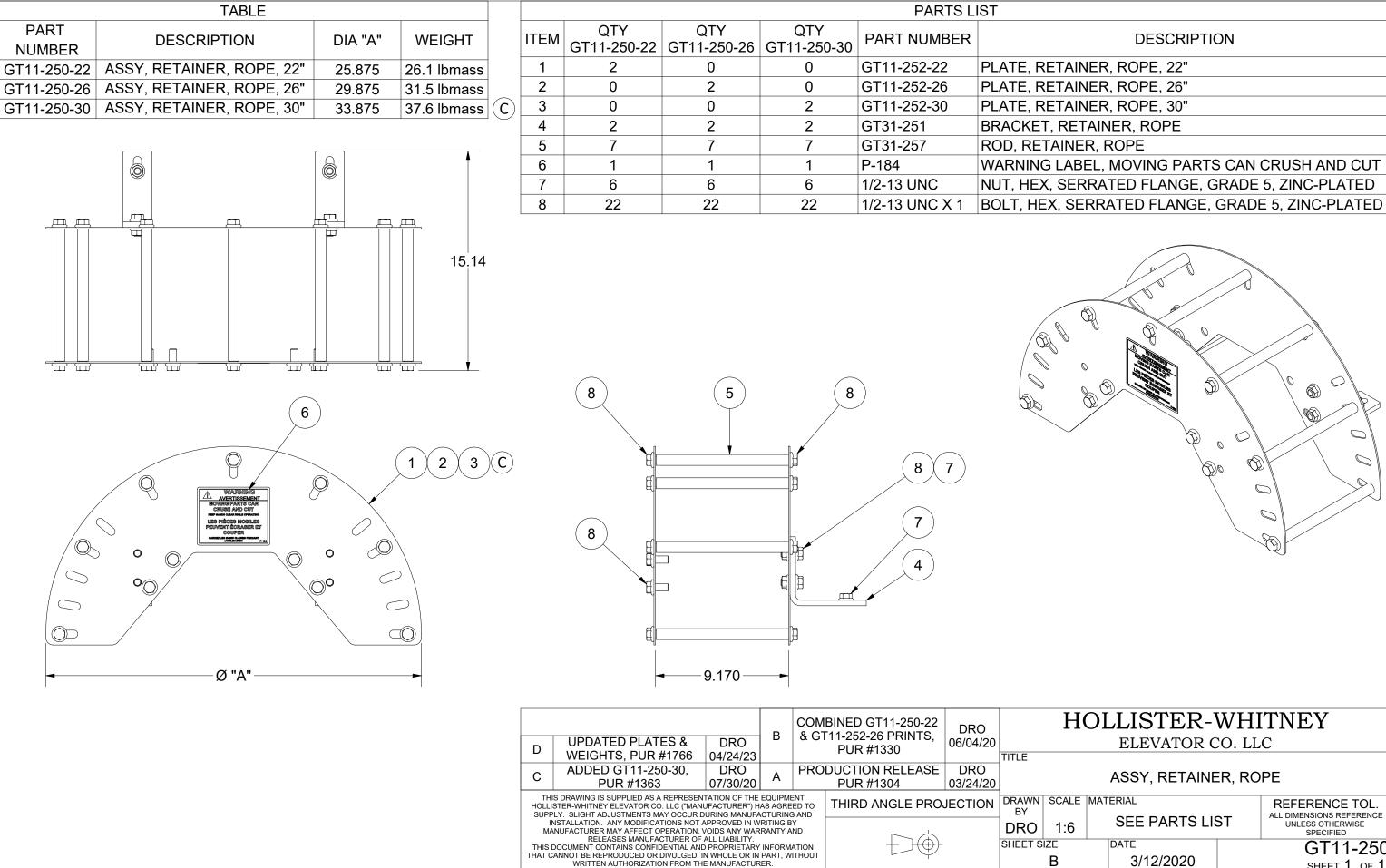
Page 62

SHEET 1 OF 1

Bulletin #1160 Content

- 1. Hollister-Whitney Geared Machine Brake Data Footed Motor
- 2. Hollister-Whitney Geared Machine Brake Data C-Face Motor
- 3. Hollister-Whitney Gearless Machine Brake Data
- 4. Bluelight Gearless Machine Brake Data
- 5. Hollister-Whitney Replacement (Split Frame) Drum Brake Data

1. Hollister-Whitney Geared Machine Brake Data – Footed Motor

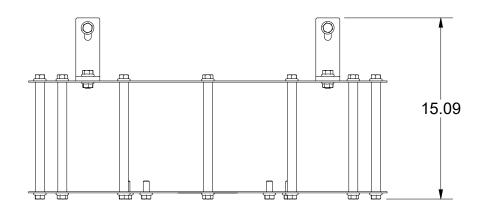

Machine Model	Brake Model	Brake Style	Constant Line Voltage (VDC)	Pick Voltage (VDC)	Pick Current (Amps)	Hold Voltage (VDC)	Coil Resistance (Ohms)	Supplied
# 2 4	#00	Disa	115	125	3.48	75	33	Optional
#34	#92	Disc	230	250	1.66	150	138	Standard
		Davas	115	125	1.63	75	71	Optional
#43	#90	Drum	230	250	0.82	150	280	Standard
	44 #102	5.	115	125	2.44	75	46.45	Optional
#44		Disc	230	250	1.24	150	190	Standard
		_	115	125	1.63	75	71	Optional
#53	#100	Drum	^{IM} 230 250 0.82		150	280	Standard	
		5.	115	125	2.44	75	46.45	Optional
#54	#102	Disc	230	250	1.24	150	190	Standard
		_	115	125	1.63	75	71	Optional
#63	#110	Drum	230	250	0.82	150	280	Standard
		<u>.</u>	115	125	2.44	75	46.45	Optional
#64	#112	Disc	230	230 250 1.24		150	190	Standard
	"120		115	125	1.38	75	84	Optional
#74	#120	Drum	230	250	0.73	150	313	Standard

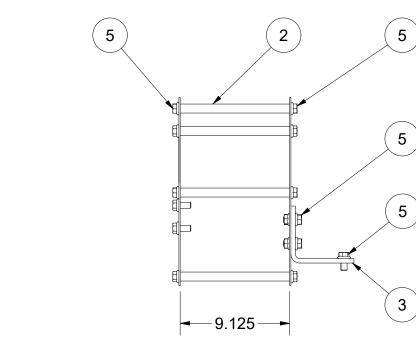
Notes:

- Brake Coils on Geared Machines with *Foot Mounted Motors* are supplied standard as 230 VDC. 115 VDC brake coils must be specified when ordering.
- Brake Monitor Switches on Geared Machines with Foot Mounted Motors are wired "Normally Closed."

2. <u>Hollister-Whitney Geared Machine Brake Data – C-Face Motor</u>

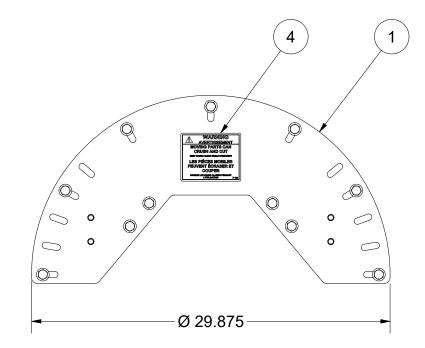
Machine Model	Brake Model	Brake Style	Constant Line Voltage (VDC)	Pick Voltage (VDC)	Pick Current (Amps)	Hold Voltage (VDC)	Coil Resistance (Ohms)	Supplied As
#44F	#93 (Mayr #100)	Shaft Mounted Disc	115	104	2.17	52	48 ± 5%	Standard
#GT11 #GT31	#GT31- 314 (Wulon)	Drum	230	190	1.94	80	98 ± 5%	Standard

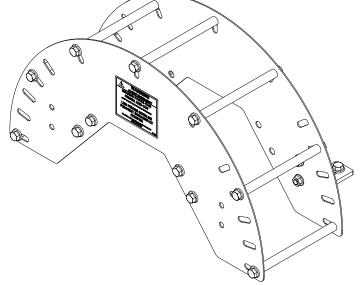



DESCRIPTION
RETAINER, ROPE, 22"
RETAINER, ROPE, 26"
RETAINER, ROPE, 30"
T, RETAINER, ROPE
TAINER, ROPE
G LABEL, MOVING PARTS CAN CRUSH AND CUT
X, SERRATED FLANGE, GRADE 5, ZINC-PLATED
EX, SERRATED FLANGE, GRADE 5, ZINC-PLATED

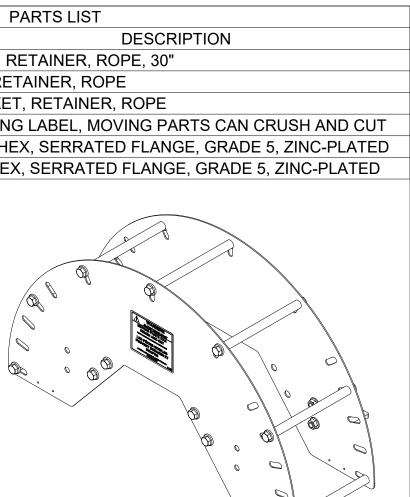
	SCALE	MATERIAL	REFERENCE TOL.
	1:6	SEE PARTS LIS	ST ALL DIMENSIONS REFERENCE UNLESS OTHERWISE SPECIFIED
SIZE I		DATE	GT11-250
	В	3/12/2020	SHEET 1 OF 1

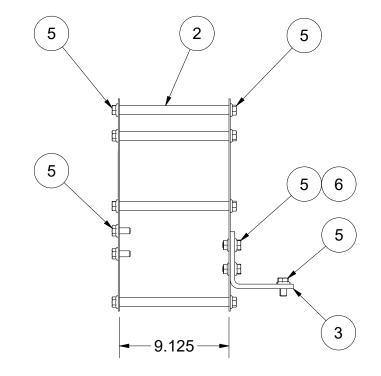
Page 64

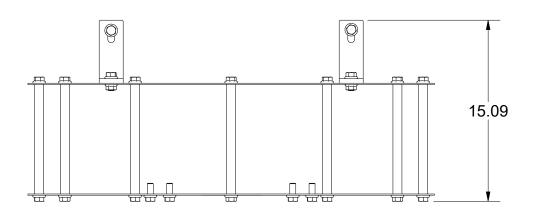

			PARTS LIST								
ITEM	QTY	PART NUMBER	DESCRIPTION								
1	2	GT31-252-26	PLATE, RETAINER, ROPE, 26"								
2	7	GT31-257	ROD, RETAINER, ROPE								
3	2	GT31-251	BRACKET, RETAINER, ROPE								
4	1	P-184	WARNING LABEL, MOVING PARTS CAN CRUSH AND CUT								
5	24	1/2-13 UNC X 1	BOLT, HEX, SERRATED FLANGE, GRADE 5, ZINC-PLATED								
6	4	1/2-13 UNC	NUT, HEX, SERRATED FLANGE, GRADE 5, ZINC-PLATED								

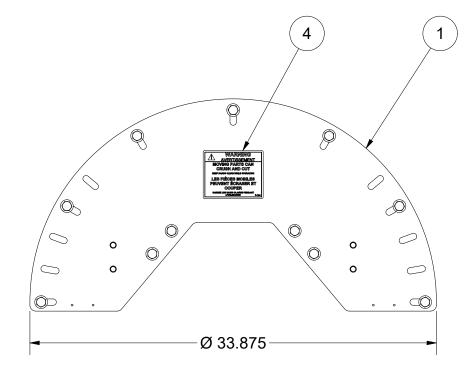


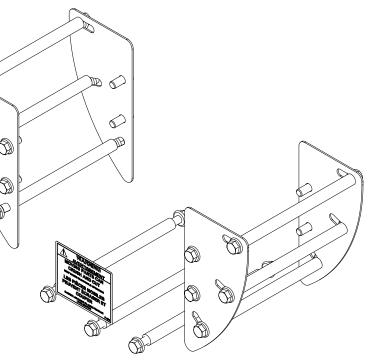
		С	UPDATED PLATES & WEIGHT, PUR #1766	DRO 04/24/23		HC	DLLISTER-V	VHITNEY
		В	ADDED PROJECTED	DRO	ELEVATOR CO. LLC			O. LLC
		А	VIEWS, PUR #1422 PRODUCTION RELEASE PUR #1164	05/04/21 BEH 04Aug19	ASSY DETAINED DODE 26"			
HO	THIS DRAWING IS SUPPLIED AS A REPRESENTATION OF THE LISTER-WHITNEY ELEVATOR CO. LLC ("MANUFACTURER") H PPLY. SLIGHT ADJUSTMENTS MAY OCCUR DURING MANUFA INSTALLATION. ANY MODIFICATIONS NOT APPROVED IN W MANUFACTURER MAY AFFECT OPERATION, VOIDS ANY WAR	AS AGREEI CTURING A RITING BY	ED TO I HIRD ANGLE PRO	JECTION	DRAWN BY BEH	SCALE N 1:8	N/A	REFERENCE TOL. ALL DIMENSIONS REFERENCE UNLESS OTHERWISE SPECIFIED
	RELEASES MANUFACTURER OF ALL LIABILITY. S DOCUMENT CONTAINS CONFIDENTIAL AND PROPRIETARY CANNOT BE REPRODUCED OR DIVULGED, IN WHOLE OR IN WRITTEN AUTHORIZATION FROM THE MANUFACTUR	PART, WIT			SHEET S	B	date 7/29/2019	GT31-250-26 SHEET 1 OF 1


6

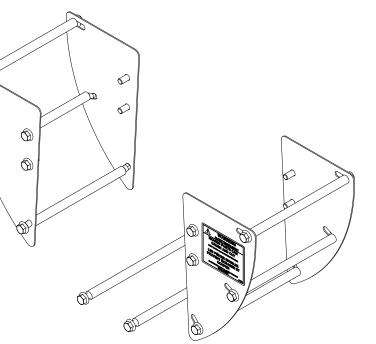



WEIGHT: 30.2 lbmass

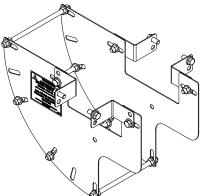

			PA
ITEM	QTY	PART NUMBER	
1	2	GT31-252-30	PLATE, RE
2	7	GT31-257	ROD, RETA
3	2	GT31-251	BRACKET,
4	1	P-184	WARNING
5	24	1/2-13 UNC X 1	BOLT, HEX
6	4	1/2-13 UNC	NUT, HEX,


	C	UPDATED PLATES & WEIGHT, PUR #1766	DRO 04/24/23		HC	DLLISTER-V	VHITNEY
	В	ADDED PROJECTED VIEWS, PUR #1422	DRO	ELEVATOR CO. LLC			D. LLC
	A P	RODUCTION RELEASE	05/04/21 BEH 04Aug19				
THIS DRAWING IS SUPPLIED AS A REPRESENTATION OF THE E DLISTER-WHITNEY ELEVATOR CO. LLC ("MANUFACTURER") HA UPPLY. SLIGHT ADJUSTMENTS MAY OCCUR DURING MANUFAC INSTALLATION. ANY MODIFICATIONS NOT APPROVED IN WR MANUFACTURER MAY AFFECT OPERATION, VOIDS ANY WARR	S AGREED T CTURING AN RITING BY	TO THIRD ANGLE PROJ	IECTION	DRAWN BY BEH	SCALE 1	MATERIAL	REFERENCE TOL. ALL DIMENSIONS REFERENCE UNLESS OTHERWISE SPECIFIED
RELEASES MANUFACTURER OF ALL LIABILITY. HIS DOCUMENT CONTAINS CONFIDENTIAL AND PROPRIETARY II AT CANNOT BE REPRODUCED OR DIVULGED, IN WHOLE OR IN P WRITTEN AUTHORIZATION FROM THE MANUFACTURE	PART, WITHO			SHEET S	IZE B	DATE 7/29/2019	GT31-250-30 SHEET 1 OF 1

WEIGHT: 36.3 lbmass
HOLLISTER-WHITNEY
ELEVATOR CO. LLC


TABLE						PAI	RTS LIST	
PART NUMBER DESCRIPTION	"A"	WEIGHT	ITEM	QTY	QTY	QTY	PART NUMBER	DESCRIPTION
GT11BS-250-22 ASSY, RETAINER, ROPE, BS, 22"	10.9	19.2 lbmass		GT11BS-250-22	GT11BS-250-26	GT11BS-250-30	FART NUMBER	DESCRIPTION
GT11BS-250-26 ASSY, RETAINER, ROPE, BS, 26"	13.4	22.7 lbmass	1	4	0	0	GT11BS-252-22	PLATE, RETAINER, ROPE, BS, 22"
GT11BS-250-30 ASSY, RETAINER, ROPE, BS, 30"	15.7	27.0 lbmass	2	0	4	0	GT11BS-252-26	PLATE, RETAINER, ROPE, BS, 26"
			3	0	0	4	GT11BS-252-30	PLATE, RETAINER, ROPE, BS, 30"
			4	9	9	9	GT11BS-257	ROD, RETAINER, ROPE
		<u> </u>	5	1	1	1	P-184	WARNING LABEL, MOVING PARTS CAN CRUSH AND CUT
			6	20	20	20	1/2-13 UNC X 1	BOLT, HEX, SERRATED FLANGE, GRADE 5, ZINC-PLATED
		11.2	7	6	6	6	1/2-13 UNC X 1.5	BOLT, HEX, SERRATED FLANGE, GRADE 5, ZINC-PLATED
Image: Construction of the second		2 3	(7		C WEIC	DIMENSION WAS		OLLISTER-WHITNEY ELEVATOR CO. LLC
			HOLLISTER-WHITN SUPPLY. SLIGHT	IS SUPPLIED AS A REPRESENTA' IEY ELEVATOR CO. LLC ("MANUF/ ADJUSTMENTS MAY OCCUR DUR	TION OF THE EQUIPMENT ACTURER") HAS AGREED TO ING MANUFACTURING AND	JCTION RELEASE, PUR #1401 1 THIRD ANGLE PROJE	DRO 1/20/20 CTION DRAWN SCALE BY	
			MANUFACTUR	N. ANY MODIFICATIONS NOT APF ER MAY AFFECT OPERATION, VOI ELEASES MANUFACTURER OF ALL	DS ANY WARRANTY AND		DRO 1:6	SEE PARTS LIST UNLESS OTHERWISE SPECIFIED
			THIS DOCUMENT HAT CANNOT BE F	CONTAINS CONFIDENTIAL AND P REPRODUCED OR DIVULGED, IN W EN AUTHORIZATION FROM THE M	ROPRIETARY INFORMATION	t	SHEET SIZE B	DATE GT11BS-250 11/11/2020 SHEET 1 OF 1

Page 67


						PARTS LIST
			ITEM		PART NUMBER	DESCRIPTION
			1		GT31BS-252-26	PLATE, RETAINER, ROPE, BS, 26"
			23		GT31BS-257 1/2-13 UNC X 1"	ROD, RETAINER, ROPE BOLT, HEX, SERRATED FLANGE, GRADE 5, ZINC-PLATED
Щ	Ē		3	24	1/2-13 UNC A 1	BOLT, HEX, SERRATED FLANGE, GRADE 5, ZINC-PLATED
		12.7				
			11.5—			
\bigcirc	\bigcirc		40.5			
		◀	13.5—			WEIGHT: 20.5 lbmass
					DRAWN, ADDED VIEWS AND	HOLLISTER-WHITNEY
			B		DIMENSIONS, 08	ELEVATOR CO. LLC
		C UPDATED PLATES & DRC WEIGHT, PUR #1766 04/24/	/23 A			TITLE 3EH Jun20 ASSY, RETAINER, ROPE, BS, 26"
		THIS DRAWING IS SUPPLIED AS A REPRESENTATION OF HOLLISTER-WHITNEY ELEVATOR CO. LLC ("MANUFACTURE SUPPLY, SUCH AD INSTMENTS MAY OCCUR DURING MA	R") HAS AGRE	ED TO	THIRD ANGLE PROJEC	
		SUPPLY. SLIGHT ADJUSTMENTS MAY OCCUR DURING MA INSTALLATION. ANY MODIFICATIONS NOT APPROVED MANUFACTURER MAY AFFECT OPERATION, VOIDS ANY	IN WRITING B	Y		BEH 1:6 N/A UNLESS OTHERWISE SPECIFIED
		RELEASES MANUFACTURER OF ALL LIABIL THIS DOCUMENT CONTAINS CONFIDENTIAL AND PROPRIE THAT CANNOT BE REPRODUCED OR DIVULGED, IN WHOLE (TARY INFORM OR IN PART, W	ATION ITHOUT	$+ \mathcal{F}(\mathbf{\Phi})$	SHEET SIZE DATE GT31BS-250-26
		WRITTEN AUTHORIZATION FROM THE MANUFA	CTURER.			B 6/26/2020 SHEET 1 OF 1

				QTY	PART NUMBER	PARTS LIST DESCRIPTION
			1	4	GT31BS-252-30	PLATE, RETAINER, ROPE, BS, 30"
	(T-T)		2	8	GT31BS-257	ROD, RETAINER, ROPE
	H		3	1	P-184	WARNING LABEL, MOVING PARTS CAN CRUSH AND CUT
			4	24	1/2-13 UNC X 1"	BOLT, HEX, SERRATED FLANGE, GRADE 5, ZINC-PLATED
		3 WARRING WARRING WARRING WARRING WARRING WARRING WARRING WARRING WARRING WARRING WARRING WARRING CRUBA AND CUT WARRING LEP PECE MOBILE UNIT SCAME CRUBA AND CUT WARRING LEP PECE MOBILE UNIT SCAME UNIT	11.	5		ISO VIEW SCALE 1:8
\bigcirc	\bigcirc					
			10	F		
			— 13.	ر		WEIGHT: 24.3 lbmass
					AWN, ADDED EWS AND DR	HOLLISTER-WHITNEY
			В	DI	IENSIONS, 08/19	ELEVATOR CO. LLC
		C UPDATED PLATES & C WEIGHT, PUR #1766	A	RODU	UR #1695 CTION RELEASE BE UR #1353 26Ju	
		THIS DRAWING IS SUPPLIED AS A REPRESENTATION OF TH HOLLISTER-WHITNEY ELEVATOR CO. LLC ("MANUFACTURER") SUPPLY. SLIGHT ADJUSTMENTS MAY OCCUR DURING MANU INSTALLATION. ANY MODIFICATIONS NOT APPROVED IN MANUFACTURER MAY AFFECT OPERATION, VOIDS ANY WA	HAS AGREED FACTURING AN WRITING BY ARRANTY AND			BY ALL DIMENSIONS REFERENCE UNLESS OTHERWISE SPECIFIED
		RELEASES MANUFACTURER OF ALL LIABILITY THIS DOCUMENT CONTAINS CONFIDENTIAL AND PROPRIETAF THAT CANNOT BE REPRODUCED OR DIVULGED, IN WHOLE OR THAT CANNOT BE REPRODUCED OR DIVULGED, IN WHOLE OR	RY INFORMATION PART, WITH		$+ \mathbf{F} \oplus \mathbf{F}$	SHEET SIZE DATE GT31BS-250-30
		WRITTEN AUTHORIZATION FROM THE MANUFACTU	JRER.			В 6/26/2020 SHEET 1 OF 1

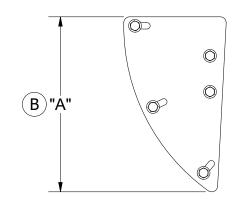
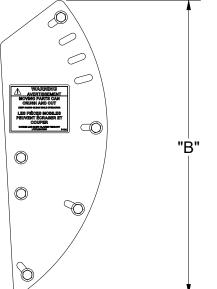

Page 69

TABLE				PARTS LIST					
PART NUMBERDESCRIPTIONGT110D-250-22ASSY, RETAINER, ROPE, OD, 22"	"A" 10.9	"B" 17.2	WEIGHT 41.6 lbmass	ITEM	QTY GT110D-250-22	QTY GT110D-250-26	QTY GT110D-250-30	PART NUMBER	DESCRIPTION
GT110D-250-26 ASSY, RETAINER, ROPE, OD, 26" GT110D-250-30 ASSY, RETAINER, ROPE, OD, 30"	13.4 15.7	21.7 26.5	46.4 lbmass 52.5 lbmass	1	2	2	2	331-175-003	ROPE RETAINER SIDE PLATE, 25" & 26" DIAMETER SHEAVE
	10.7	20.0	52.5 15111233	2	4	4	4	GT110D-251	BRACKET, ROPE RETAINER, OD DEFLECTOR SHEAVE, GT MACHINE
		 16.	4	3	2	0	0	GT11BS-252-22	PLATE, RETAINER, ROPE, BS, 22"
		10.	•	4	0	2	0	GT11BS-252-26	PLATE, RETAINER, ROPE, BS, 26"
				5	0	0	2	GT11BS-252-30	PLATE, RETAINER, ROPE, BS, 30"
	13		₫ <u>₿</u>	6	2	0	0	GT110D-252-22	PLATE, RETAINER, ROPE, OD, 22"
	\sim /			7	0	2	0	GT110D-252-26	PLATE, RETAINER, ROPE, OD, 26"
	2)/	di internetta internet	E ®	8	0	0	2	GT110D-252-30	PLATE, RETAINER, ROPE, OD, 30"
	\sim			9	11	11	11	GT11BS-257	ROD, RETAINER, ROPE
	13)	_#====	E P	10	4	4	4	GT110D-257	ROD, RETAINER, ROPE
	12		==== ₽ ₽ 	11	3	3	3	P-184	WARNING LABEL, MOVING PARTS CAN CRUSH AND CUT
		9.2	2	12	20	20	20	1/2" - 13 UNC	SERRATED FLANGE LOCKNUT
	10			13	32	32	32	1/2" - 13 UNC x 1	BOLT, HEX, SERRATED FLANGE, GRADE 5, ZINC-PLATED
				14	6	6	6	1/2" - 13 UNC x 1.5	BOLT, HEX, SERRATED FLANGE, GRADE 5, ZINC-PLATED
)				La A La A La A				
NOTES UNLESS OTHERWISE SPECIFIED: 1. PLACE P-184 LABELS AT VISIBLE LOCATIONS RETAINERS.	NEAR R	OPE				B GT110D GT31-257	PLATES & DRO , PUR #1766 04/24/2 -257 WAS DRO , PUR #1447 02/02/2 DN RELEASE, DRO #1417 12/11/2	23 NOLL 21 TITLE	LISTER-WHITNEY ELEVATOR CO. LLC Y, RETAINER, ROPE, OD
			HOLLISTER-W SUPPLY. SLI INSTALL MANUFAC THIS DOCUMI THAT CANNOT	HITNEY ELEV GHT ADJUSTM ATION. ANY M TURER MAY A RELEASES ENT CONTAIN BE REPRODU	JED AS A REPRESENTATION OF T ATOR CO. LLC ("MANUFACTURER" JENTS MAY OCCUR DURING MANI IODIFICATIONS NOT APPROVED IN FFECT OPERATION, VOIDS ANY W MANUFACTURER OF ALL LIABILIT S CONFIDENTIAL AND PROPRIETA CED OR DIVULGED, IN WHOLE OF DRIZATION FROM THE MANUFACT) HAS AGREED TO JFACTURING AND J WRITING BY (ARRANTY AND (, RY INFORMATION IN PART, WITHOUT		DRO 1:11 S	EE PARTS LIST

	TABLE			
ASSY PART NUMBER	DESCRIPTION "A" "E			WEIGHT
GT31OD-250-30	ASSY, RETAINER, ROPE, OD, 30"	14.6"	24.4"	49.7 lbmass
6		11		
			2	
	3	3	S	THIS DRAWING IS SUPPLI JLLISTER-WHITNEY ELEVA UPPLY. SLIGHT ADJUSTMI INSTALLATION. ANY MC MANUFACTURER MAY AF RELEASES M HIS DOCUMENT CONTAINS IT CANNOT BE REPRODUC WRITTEN AUTHO


PAF			
	PART NUMBER	QTY	ITEM
PLATE, RETA	GT31BS-252-30	2	1
PLATE, RETA	GT31OD-252-30	2	2
ROD, RETAI	GT31BS-257	9	3
BOLT, HEX, S	1/2"-13 UNC X 1"	26	4
WARNING LA	P-184	2	5
ROD, RETAI	GT31-257	4	6
BRACKET, R	GT110D-251	4	7
MACHINE			
ROPE RETAI	331-175-003	2	8
WARNING LA	P-184	2	9
BOLT, HEX, S	1/2" - 13 UNC X 1"	16	10
NUT, HEX, S	1/2" - 13 UNC	4	11

 \bigcirc

C	· -·	UPDATED PLATES & WEIGHT, PUR #1766			HC	LLISTER-WHITNEY		
В	3 CO	RRECTED LETTER,	DRO			ELEVATOR C	O. LL	С
		PUR #1695 DUCTION RELEASE	08/19/22 BEH	TITLE				
A			22May21			ASSY, RETAINER,	ROPE	E, OD
THIS DRAWING IS SUPPLIED AS A REPRESENTATION OF THE EQUIP HOLLISTER-WHITNEY ELEVATOR CO. LLC ("MANUFACTURER") HAS AG	GREED TO	THIRD ANGLE PRO	JECTION	DRAWN BY	SCALE N	IATERIAL		REFERENCE TOL.
SUPPLY. SLIGHT ADJUSTMENTS MAY OCCUR DURING MANUFACTUR INSTALLATION. ANY MODIFICATIONS NOT APPROVED IN WRITING MANUFACTURER MAY AFFECT OPERATION, VOIDS ANY WARRANT	IG BY			BEH	1:8	N/A		ALL DIMENSIONS REFERENCE UNLESS OTHERWISE SPECIFIED
RELEASES MANUFACTURER OF ALL LIABILITY. THIS DOCUMENT CONTAINS CONFIDENTIAL AND PROPRIETARY INFORMATION THAT CANNOT BE REPRODUCED OR DIVULGED, IN WHOLE OR IN PART, WITHOUT				SHEET S		DATE		GT310D-250
WRITTEN AUTHORIZATION FROM THE MANUFACTURER.					В	5/26/2021		SHEET 1 OF 1

RTS LIST DESCRIPTION TAINER, ROPE, BS, 30" TAINER, ROPE, OD, 30" INER, ROPE SERRATED FLANGE, GRADE 5, ZINC-PLATED ABEL, MOVING PARTS CAN CRUSH AND CUT INER, ROPE ROPE RETAINER, OD DEFLECTOR SHEAVE, GT AINER SIDE PLATE, 25" & 26" DIAMETER SHEAVE ABEL, MOVING PARTS CAN CRUSH AND CUT , SERRATED FLANGE, GRADE 5, ZINC-PLATED SERRATED FLANGE, GRADE 5, ZINC-PLATED

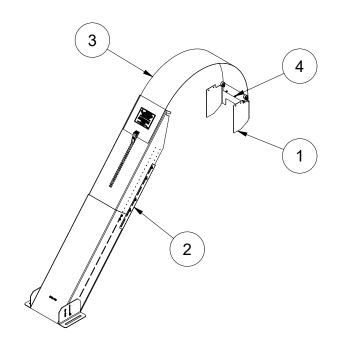
 \bigcirc

WEIGHT: 49.7 lbmass

				PAR
	ITEM	QTY	PART NUMBER	
	1	2	GT31BS-252-30	PLATE, RE
	2	2		
	3	9	GT31BS-257	ROD, RETA
	4	26	1/2"-13 UNC X 1"	BOLT, HEX
	5	2	P-184	WARNING
B WEIGHT, PUR #1766 04/24/23 TITLE A PRODUCTION RELEASE BEH THIS DRAWING IS SUPPLIED AS A REPRESENTATION OF THE EQUIPMENT 22May21 THIS DRAWING IS SUPPLIED AS A REPRESENTATION OF THE EQUIPMENT THIRD ANGLE PROJECTION HOLLISTER-WHITNEY ELEVATOR CO. LLC ("MANUFACTURE") HAS AGREED TO SUPPLY. SUPPLY. SLIGHT ADJUSTMENTS MAY OCCUR DURING MANUFACTURING AND INSTALLATION. ANY MODIFICATIONS NOT APPROVED IN WRITING BY THIRD ANGLE PROJECTION MANUFACTURER MAY AFFECT OPERATION, VOIDS ANY WARRANTY AND RELEASES MANUFACTURER OF ALL LIABILITY. THIS DOCUMENT CONTAINS CONFIDENTIAL AND PROPRIETARY INFORMATION Image: Contains Confidential AND PROPRIETARY INFORMATION				
B WEIGHT, PUR #1766 04/24/23 TITLE A PRODUCTION RELEASE BEH THIS DRAWING IS SUPPLIED AS A REPRESENTATION OF THE EQUIPMENT 22May21 THIS DRAWING IS SUPPLIED AS A REPRESENTATION OF THE EQUIPMENT THIRD ANGLE PROJECTION HOLLISTER-WHITNEY ELEVATOR CO. LLC ("MANUFACTURE") HAS AGREED TO SUPPLY. SUPPLY. SLIGHT ADJUSTMENTS MAY OCCUR DURING MANUFACTURING AND INSTALLATION. ANY MODIFICATIONS NOT APPROVED IN WRITING BY THIRD ANGLE PROJECTION MANUFACTURER MAY AFFECT OPERATION, VOIDS ANY WARRANTY AND RELEASES MANUFACTURER OF ALL LIABILITY. THIS DOCUMENT CONTAINS CONFIDENTIAL AND PROPRIETARY INFORMATION Image: Contains Confidential AND PROPRIETARY INFORMATION				
A PUR #1490 22May21 THIS DRAWING IS SUPPLIED AS A REPRESENTATION OF THE EQUIPMENT HOLLISTER-WHITNEY ELEVATOR CO. LLC ("MANUFACTURER") HAS AGREED TO SUPPLY. SLIGHT ADJUSTMENTS MAY OCCUR DURING MANUFACTURING AND INSTALLATION. ANY MODIFICATIONS NOT APPROVED IN WRITING BY MANUFACTURER MAY AFFECT OPERATION, VOIDS ANY WARRANTY AND RELEASES MANUFACTURER OF ALL LLABILITY. THIS DOCUMENT CONTAINS CONFIDENTIAL AND PROPRIETARY INFORMATION THIRD ANGLE PROJECTION BEH DRAWN BY SC SHEET SIZE	В	WE	EIGHT, PUR #1766 04/24/	23 TITLE
THIS DRAWING IS SUPPLIED AS A REPRESENTATION OF THE EQUIPMENT THIRD ANGLE PROJECTION DRAWN SC HOLLISTER-WHITNEY ELEVATOR CO. LLC ("MANUFACTURER") HAS AGREED TO SUPPLY. SLIGHT ADJUSTMENTS MAY OCCUR DURING MANUFACTURING AND THIRD ANGLE PROJECTION BRAWN BY INSTALLATION. ANY MODIFICATIONS NOT APPROVED IN WRITING BYD MANUFACTURER OF ALL LIABILITY. THIS DOCUMENT CONTAINS CONFIDENTIAL AND PROPRIETARY INFORMATION SHEET SIZE	A	PRO		
BY B	THIS DRAWING IS SUPPLIED AS A REPRESENTATION OF THE EQUIP	MENT_		
MANUFACTURER MAY AFFECT OPERATION, VOIDS ANY WARRANTY AND RELEASES MANUFACTURER OF ALL LIABILITY. THIS DOCUMENT FOR THE CONTAINS CONFIDENTIAL AND PROPRIETARY INFORMATION THIS DOCUMENT FOR DEPORTED FOR THE ADD PROPRIETARY INFORMATION	SUPPLY. SLIGHT ADJUSTMENTS MAY OCCUR DURING MANUFACTUR	NG AND		BY
THIS DOCUMENT CONTAINS CONFIDENTIAL AND PROPRIETARY INFORMATION	MANUFACTURER MAY AFFECT OPERATION, VOIDS ANY WARRANT RELEASES MANUFACTURER OF ALL LIABILITY.	AND		
WRITTEN AUTHORIZATION FROM THE MANUFACTURER. B	THIS DOCUMENT CONTAINS CONFIDENTIAL AND PROPRIETARY INFOR THAT CANNOT BE REPRODUCED OR DIVULGED, IN WHOLE OR IN PART,	MATION WITHOUT	t t	
	WRITTEN AUTHORIZATION FROM THE MANUFACTURER.	-	·	В

ARTS LIST
DESCRIPTION
RETAINER, ROPE, BS, 30"
RETAINER, ROPE, OD, 30"
TAINER, ROPE
EX, SERRATED FLANGE, GRADE 5, ZINC-PLATED
G LABEL, MOVING PARTS CAN CRUSH AND CUT

WEIGHT: 29.7 lbmass HOLLISTER-WHITNEY ELEVATOR CO. LLC

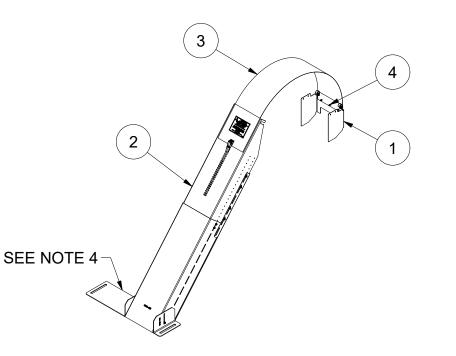

ASSY, RETAINER, ROPE, BS, 30"

	DRAWN BY	SCALE	MATERIAL	REFERENCE TOL.		
	BEH	1:5	N/A	UNLESS OTHERWISE SPECIFIED		
	SHEET S	IZE	DATE	GT310D-250-30		
	B		6/26/2020	SHEET 1 OF 1		

NOTES UNLESS OTHERWISE SPECIFIED:

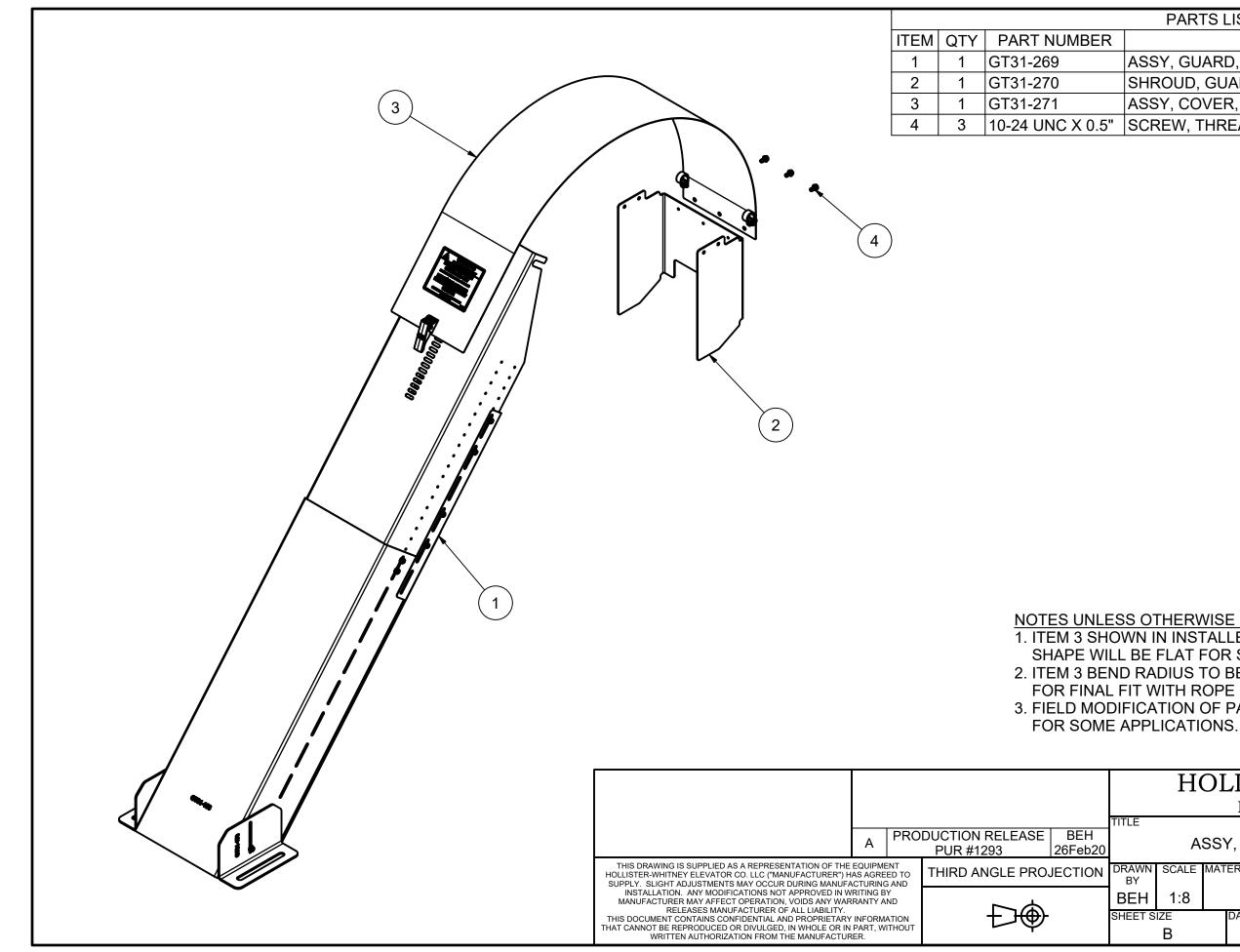
- 1. ITEM 3 SHOWN IN INSTALLED CURVED CONDITION. ACTUAL SHAPE WILL BE FLAT FOR SHIPPING PURPOSES.
- 2. ITEM 3 BEND RADIUS TO BE ADJUSTED DURING INSTALLATION FOR FINAL FIT WITH ROPE RETAINER.
- 3. FIELD MODIFICATION OF PANEL LENGTHS WILL BE REQUIRED FOR SOME APPLICATIONS.

	PARTS LIST							
ITEM	QTY	PART NUMBER	DESCRIPTION					
1	1	GT11-270	SHROUD, GUARD, ROPE, FRONT					
2	1	GT31-269	ASSY, GUARD, ROPE, REAR					
3	1	GT31-271	ASSY, COVER, WHEEL, TRACTION					
4	3	10-24 UNC X 0.5"	SCREW, THREAD FORMING - HEX					
			WASHER, TYPE F					


WEIGHT: 44.0 lbmass

						H	OLLISTER-V	NHI	TNEY
							ELEVATOR C	O. LL	С
	А	PRO	DUCTION RELEASE PUR #1303	DRO 03/23/20	TITLE	A	SSY, GUARD, ROPE	E AND	WHEEL
THIS DRAWING IS SUPPLIED AS A REPRESENTATION OF THE E HOLLISTER-WHITNEY ELEVATOR CO. LLC ("MANUFACTURER") HA SUPPLY. SLIGHT ADJUSTMENTS MAY OCCUR DURING MANUFAC INSTALLATION. ANY MODIFICATIONS NOT APPROVED IN WR MANUFACTURER MAY AFFECT OPERATION, VOIDS ANY WARR RELEASES MANUFACTURER OF ALL LIABILITY.	S AGRE	ED TO S AND Y		ECTION	вү DRO	1:24	SEE PARTS LIS	БТ	REFERENCE TOL. ALL DIMENSIONS REFERENCE UNLESS OTHERWISE SPECIFIED
THIS DOCUMENT CONTAINS CONFIDENTIAL AND PROPRIETARY I THAT CANNOT BE REPRODUCED OR DIVULGED, IN WHOLE OR IN F WRITTEN AUTHORIZATION FROM THE MANUFACTURE	PART, W				SHEET S	A	DATE 3/17/2020		GT11-261 SHEET 1 OF 1

NOTES UNLESS OTHERWISE SPECIFIED:

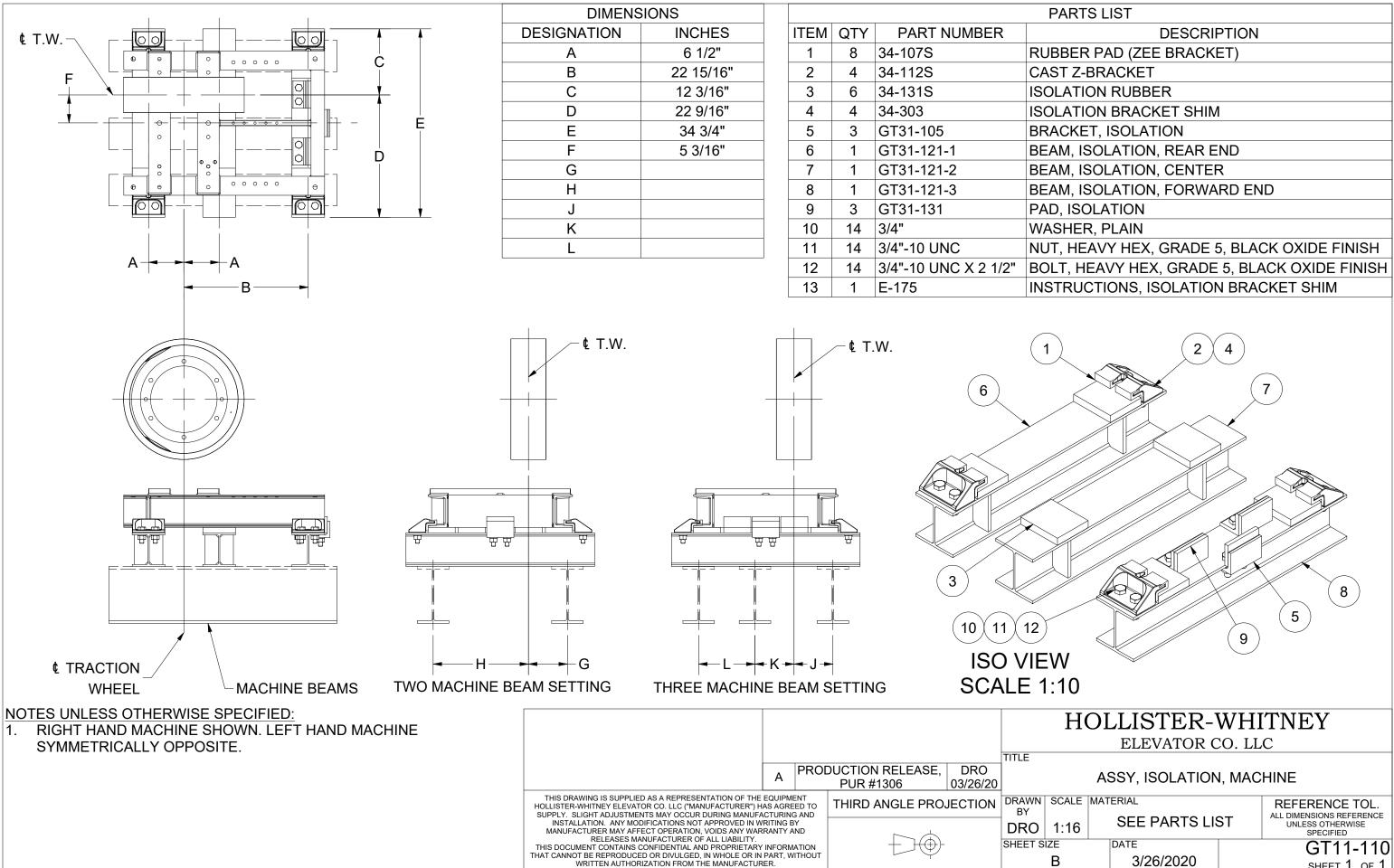

- 1. ITEM 4 SHOWN IN INSTALLED CURVED CONDITION. ACTUAL SHAPE WILL BE FLAT FOR SHIPPING PURPOSES.
- 2. ITEM 4 BEND RADIUS TO BE ADJUSTED DURING INSTALLATION FOR FINAL FIT WITH ROPE RETAINER.
- 3. FIELD MODIFICATION OF PANEL LENGTHS WILL BE REQUIRED FOR SOME APPLICATIONS.
- 4. VIEW SHOWN IS FOR A LEFT HAND ARRANGEMENT. FLOOR MOUNTING ANGLES NEED TO SWITCH SIDES FOR A RIGHT HAND ARRANGEMENT.

	PARTS LIST							
ITEM	QTY	PART NUMBER	DESCRIPTION					
1	1	GT11-270	SHROUD, GUARD, ROPE, FRONT					
2	1	GT31-269-1	ASSY, GUARD, ROPE, REAR					
3	1	GT31-271	ASSY, COVER, WHEEL, TRACTION					
4	3	10 -24 UNC X 0.5"	SCREW, THREAD FORMING - HEX					
			WASHER, TYPE F					

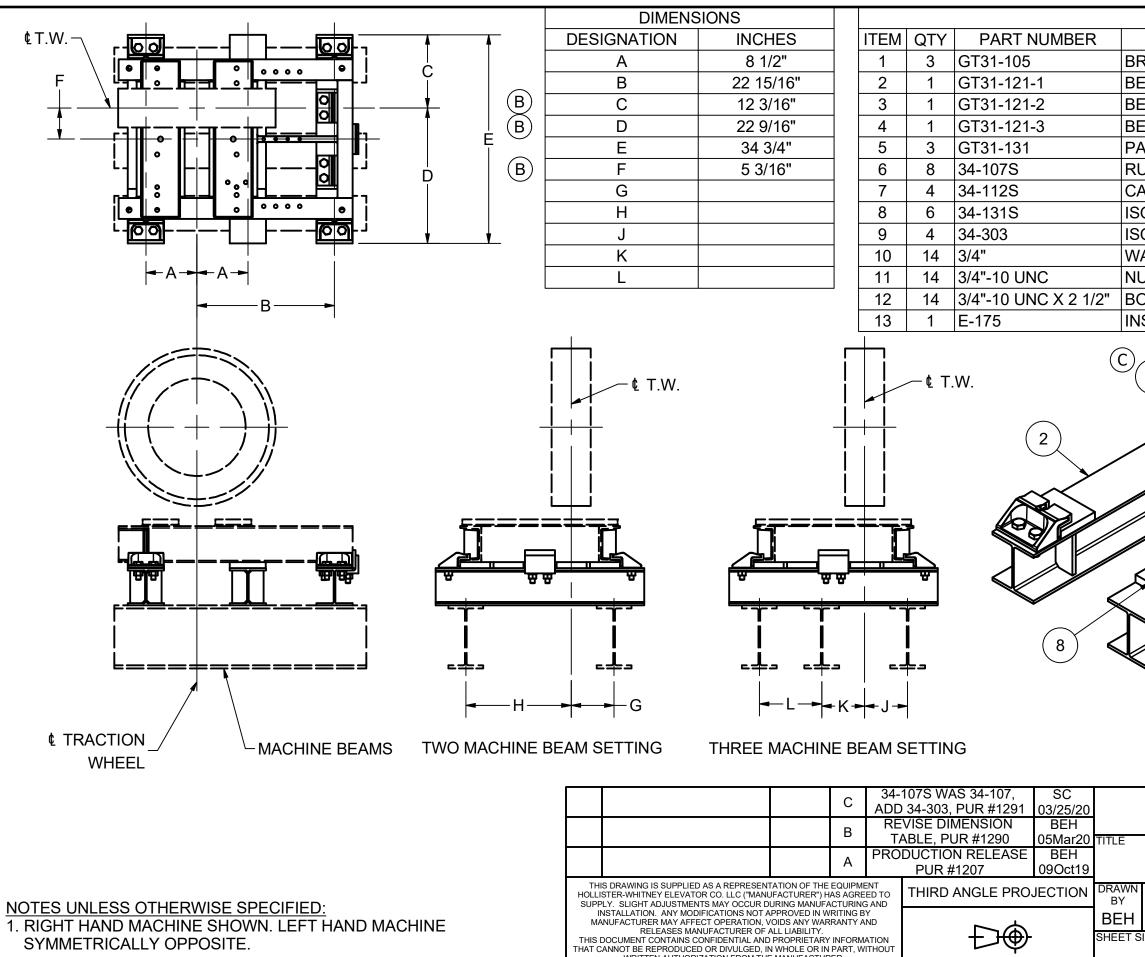
WEIGHT: 47.3 lbmass

					H	OLLISTER-	WHI	TNEY
						ELEVATOR C	CO. LL	C
	А	PRO	DUCTION RELEASE DRO PUR #1303 03/23/20		SSY, (GUARD, ROPE AND	WHE	EL, BLOCK UP
THIS DRAWING IS SUPPLIED AS A REPRESENTATION OF THE HOLLISTER-WHITNEY ELEVATOR CO. LLC ("MANUFACTURER") H, SUPPLY. SLIGHT ADJUSTMENTS MAY OCCUR DURING MANUFA INSTALLATION. ANY MODIFICATIONS NOT APPROVED IN W MANUFACTURER MAY AFFECT OPERATION, VOIDS ANY WAR	AS AGREE CTURING RITING BY	ED TO S AND Y		DRAWN BY DRO	SCALE	MATERIAL SEE PARTS LIS	ST	REFERENCE TOL. ALL DIMENSIONS REFERENCE UNLESS OTHERWISE SPECIFIED
RELEASES MANUFACTURER OF ALL LIABILITY. THIS DOCUMENT CONTAINS CONFIDENTIAL AND PROPRIETARY THAT CANNOT BE REPRODUCED OR DIVULGED, IN WHOLE OR IN WRITTEN AUTHORIZATION FROM THE MANUFACTUR	PART, WI			SHEET S	A A	DATE 3/17/2020		GT11-261-B SHEET 1 OF 1

<u>NOTES UNLESS OTHERWISE SPECIFIED:</u>
1. ITEM 3 SHOWN IN INSTALLED CURVED CONDITION. ACTUAL SHAPE WILL BE FLAT FOR SHIPPING PURPOSES.
2. ITEM 3 BEND RADIUS TO BE ADJUSTED DURING INSTALLATION FOR FINAL FIT WITH ROPE RETAINER.
3. FIELD MODIFICATION OF PANEL LENGTHS WILL BE REQUIRED FOR SOME APPLICATIONS.


WEIGHT: 45.4 lbmass

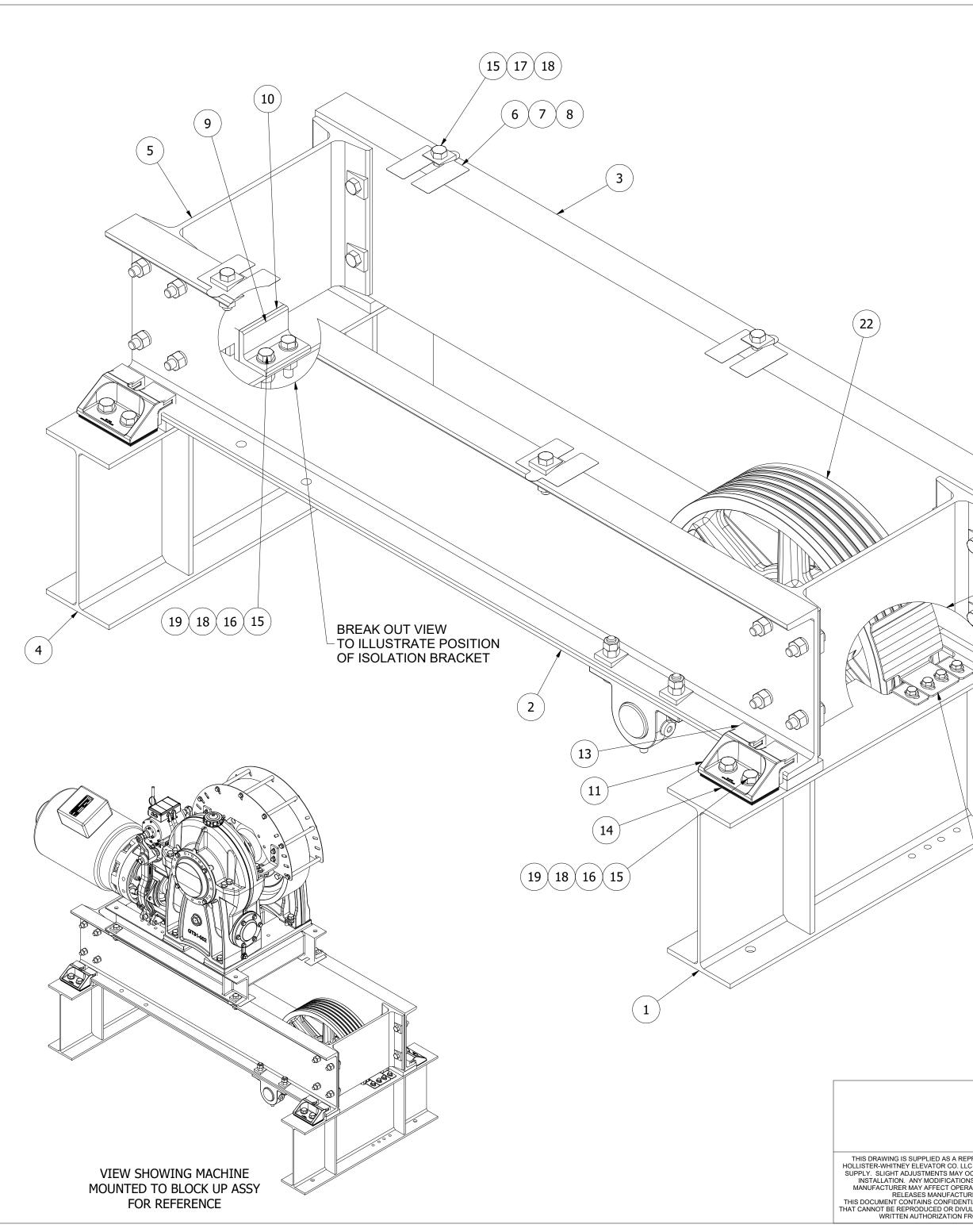
HOLLISTER-WHITNEY ELEVATOR CO. LLC


ASSY, GUARD, ROPE AND WHEEL

	SCALE	MATERIAL	REFERENCE TOL.
	1:8	N/A	ALL DIMENSIONS REFERENCE UNLESS OTHERWISE SPECIFIED
S	IZE	DATE	GT31-261
	В	2/27/2020	SHEET 1 OF 1

					PARTS	S LIST	
		ITEM	QTY	PART NUMBER		DESCRIP	
		1	1	GT31-269-1	_	RD, ROPE, REAR	
$\overline{(3)}$		2	1	GT31-270		UARD, ROPE, FR	
		3	1	GT31-271		ER, WHEEL, TRA	
	\frown	4	3	10 -24 UNC X 0.5"	SCREW, TH	READ FORMING	- HEX WASHER, TYPE F
SEE NOTE 4				SHAPE WILL 2. ITEM 4 BEND FOR FINAL F 3. FIELD MODIF FOR SOME A 4. VIEW SHOW	VN IN INSTAL BE FLAT FOF RADIUS TO IT WITH ROP FICATION OF APPLICATION N IS FOR A LE ANGLES NEEI	LED CURVED CC R SHIPPING PURI BE ADJUSTED DI E RETAINER. PANEL LENGTHS S. EFT HAND ARRAN	NDITION. ACTUAL POSES. JRING INSTALLATION WILL BE REQUIRED NGEMENT. FLOOR DES FOR A RIGHT HAND
							WEIGHT: 48.7 lbmass
					НО	LLISTER-	WHITNEY
						ELEVATOR C	
	A		JCTION PUR #1	I RELEASE BEH	TTLE ASSY, GU		WHEEL, BLOCK UP
	THIS DRAWING IS SUPPLIED AS A REPRESENTATION OF THE EQUIPM HOLLISTER-WHITNEY ELEVATOR CO. LLC ("MANUFACTURER") HAS AGR	IENT -			DRAWN SCALE M	ATERIAL	REFERENCE TOL.
	SUPPLY. SLIGHT ADJUSTMENTS MAY OCCUR DURING MANUFACTURIN INSTALLATION. ANY MODIFICATIONS NOT APPROVED IN WRITING	IG AND BY			^{вү} ВЕН 1:10	N/A	ALL DIMENSIONS REFERENCE UNLESS OTHERWISE
	MANUFACTURER MAY AFFECT OPERATION, VOIDS ANY WARRANTY RELEASES MANUFACTURER OF ALL LIABILITY. THIS DOCUMENT CONTAINS CONFIDENTIAL AND PROPRIETARY INFORM THAT CANNOT BE REPRODUCED OR DIVULGED, IN WHOLE OR IN PART, V	MATION			HEET SIZE	DATE	GT31-261-B
	WRITTEN AUTHORIZATION FROM THE MANUFACTURER.				В	2/27/2020	SHEET 1 OF 1

	SCALE	MATERIAL	REFERENCE TOL.	
	1:16	SEE PARTS LIS	ST	ALL DIMENSIONS REFERENCE UNLESS OTHERWISE SPECIFIED
S	IZE	DATE		GT11-110
B 3/26/2020			SHEET 1 OF 1	


WRITTEN AUTHORIZATION FROM THE MANUFACTURER.

PARTS LIST
DESCRIPTION
RACKET, ISOLATION
EAM, ISOLATION, REAR END
EAM, ISOLATION, CENTER
EAM, ISOLATION, FORWARD END
AD, ISOLATION
UBBER PAD (ZEE BRACKET)
AST Z-BRACKET
OLATION RUBBER
OLATION BRACKET SHIM
ASHER, PLAIN
UT, HEAVY HEX, GRADE 5, BLACK OXIDE FINISH
OLT, HEAVY HEX, GRADE 5, BLACK OXIDE FINISH
ISTRUCTIONS, ISOLATION BRACKET SHIM

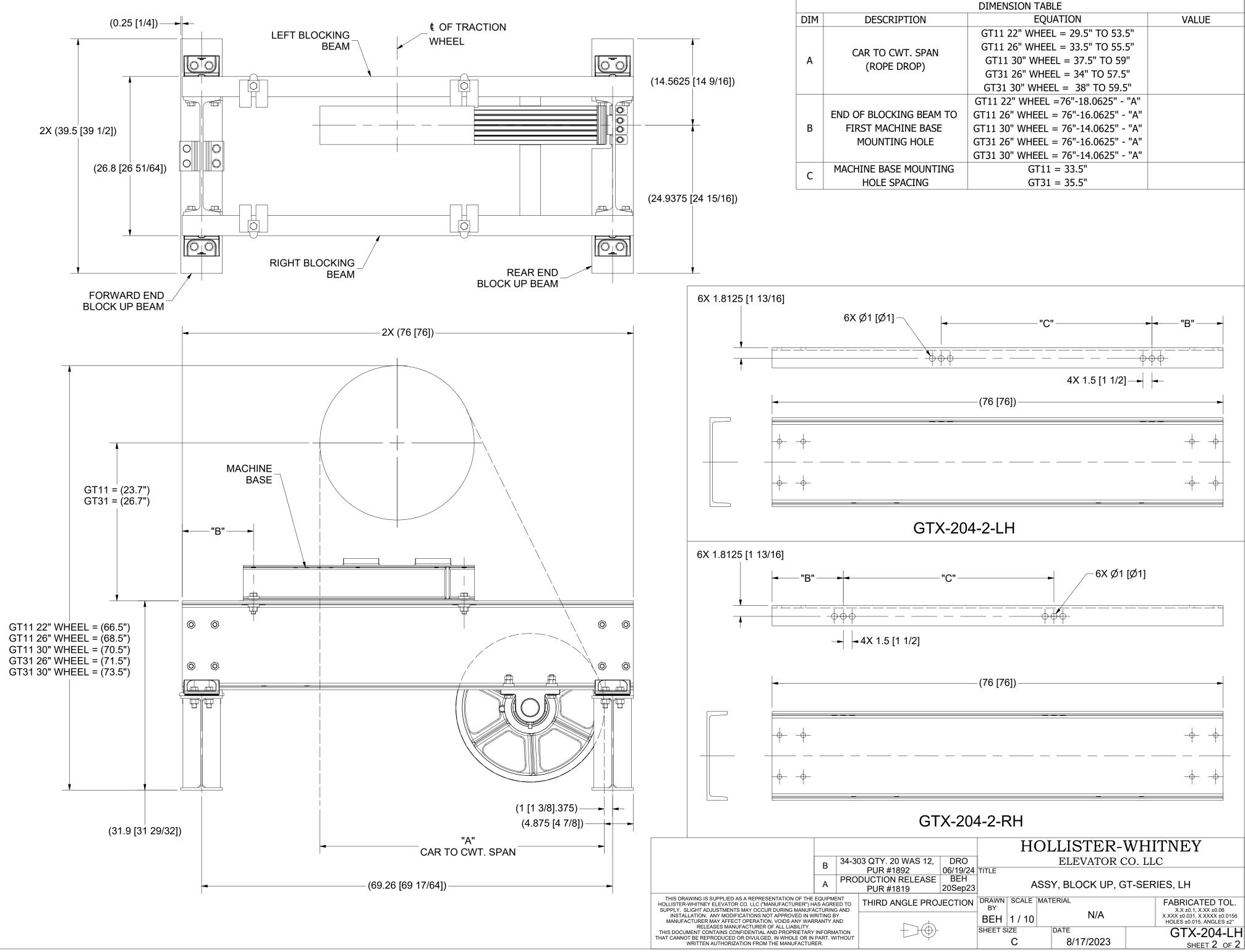
HOLLISTER-WHITNEY ELEVATOR CO. LLC

ASSY, ISOLATION, MACHINE

	SCALE	MATERIAL	REFERENCE TOL.
	1:16	N/A	ALL DIMENSIONS REFERENCE UNLESS OTHERWISE SPECIFIED
S	IZE	DATE	GT31-110
	В	9/11/2019	SHEET 1 OF 1
	-	0, 1 , 20 10	SHEET I OF

			Р	ARTS LIST
	ITEM	QTY	PART NUMBER	DESCRIPTION
	1	1	GTX-204-1	BEAM, BLOCK UP, FWD END
	2	1	GTX-204-2-RH	BEAM, BLOCKING, RH
	3	1	GTX-204-2-LH	BEAM, BLOCKING, LH
	4	1	GTX-204-4	BEAM, BLOCK UP, REAR END
	5	2	GT31-204-5	BEAM, CROSS
	6	4	GT31-062-05	SHIM, STAND, OUTBOARD
	7	4	GT31-062-10	SHIM, STAND, OUTBOARD
	8	4	GT31-062-31	SHIM, STAND, OUTBOARD
	9	2	GT31-105	BRACKET, ISOLATION
	10	2	GT31-131	PAD, ISOLATION
	11	4	34-112S	CAST Z-BRACKET
	12	4	GL185-108	GL MACHINE ISOLATOR
	13	8	34-107S	RUBBER PAD (ZEE BRACKET)
(\mathbf{B})	14	20	34-303	ISOLATION BRACKET SHIM
	15	32	3/4" - 10 UNC	NUT, HEX, HEAVY, GRADE 5, PLAIN FINISH
	16	10	3/4"	WASHER, PLAIN FINISH
	17	24	270-054	BEVEL WASHER
	18	32	3/4" - 10 UNC X 3"	BOLT, HEX, GRADE 5, BLACK OXIDE FINISH
	19	30	3/4"	WASHER, LOCK, BLACK OXIDE FINISH
	20	1	322-179	ASSY, RETAINER, ROPE, DFLCTR, BLOCK UP
	21	1	E-175	INSTRUCTIONS, ISOLATION BRACKET SHIM
	22	1	GTX-322-	ASSY, SHEAVE, DEFLECTOR, GT MACHINE
				BLOCK UP, BALL BEARING, SEALED

(15)(17)(18)(19)


〔12〕

(20)

NOTES UNLESS OTHERWISE SPECIFIED:

- 1. IF RADIAL LOAD ON DEFLECTOR SHEAVE EXCEEDS 5,750#, THEN SPHERICAL ROLLER BEARINGS MUST BE USED.
- 2. WEIGHTS:
 - BLOCK UP ASSY: 1278# DEFLECTOR SHEAVE: 323#
 - TOTAL: 1801#
- 3. MINIMUM OVERHEAD CLEARANCE FROM BOTTOM OF BLOCK UP BEAMS FOR REMOVAL OF UPPER HOUSING IS AS FOLLOWS:
 - GT11-SERIES MACHINES: 75 1/4"
 - GT31-SERIES MACHINES: 81 1/4"

					HOLLISTER-WHITNEY						
	В	34-30	03 QTY. 20 WAS 12,	DRO		ELEVATOR CO. LLC					
	A	PRO	PUR #1892 06/19/24 RODUCTION RELEASE BEH PUR #1819 20Sep23			ASSY, BLOCK UP, GT-SERIES, LH					
SUPPLIED AS A REPRESENTATION OF THE Y ELEVATOR CO. LLC ("MANUFACTURER") HA DJUSTMENTS MAY OCCUR DURING MANUFA ANY MODIFICATIONS NOT APPROVED IN W	AS AGRE CTURING RITING B	ED TO 9 AND Y	THIRD ANGLE PRO	JECTION	DRAWN BY BEH	SCALE	MATERIAL	N/A		REFERENCE TOL. ALL DIMENSIONS REFERENCE UNLESS OTHERWISE	
EASES MANUFACTURER OF ALL LIABILITY. DNTAINS CONFIDENTIAL AND PROPRIETARY PRODUCED OR DIVULGED, IN WHOLE OR IN N AUTHORIZATION FROM THE MANUFACTUR	ATION, VOIDS ANY WARRANTY AND IER OF ALL LIABILITY. IAL AND PROPRIETARY INFORMATION LGED, IN WHOLE OR IN PART, WITHOUT		\square	-	SHEET S		DATE 8/17/	/2023		GTX-204-LH SHEET 1 OF 2	

			DIMENSION TABLE	
	DIM	DESCRIPTION	EQUATION	VALUE
9/16])	A	CAR TO CWT. SPAN (ROPE DROP)	GT11 22" WHEEL = 29.5" TO 53.5" GT11 26" WHEEL = 33.5" TO 55.5" GT11 30" WHEEL = 37.5" TO 59" GT31 26" WHEEL = 34" TO 57.5" GT31 30" WHEEL = 38" TO 59.5"	
	В	END OF BLOCKING BEAM TO FIRST MACHINE BASE MOUNTING HOLE	GT11 22" WHEEL =76"-18.0625" - "A" GT11 26" WHEEL = 76"-16.0625" - "A" GT11 30" WHEEL = 76"-14.0625" - "A" GT31 26" WHEEL = 76"-16.0625" - "A" GT31 30" WHEEL = 76"-14.0625" - "A"	
	С	MACHINE BASE MOUNTING HOLE SPACING	GT11 = 33.5" GT31 = 35.5"	
15/16])			· /	

GT Series Supplemental Manual	Date	Rev.	Page	Bulletin
PRINT & PARTS LIST SUPPLEMENT	11/26/24	А	Page 81	1187S

Rope Gripper[®] - Machine duty table

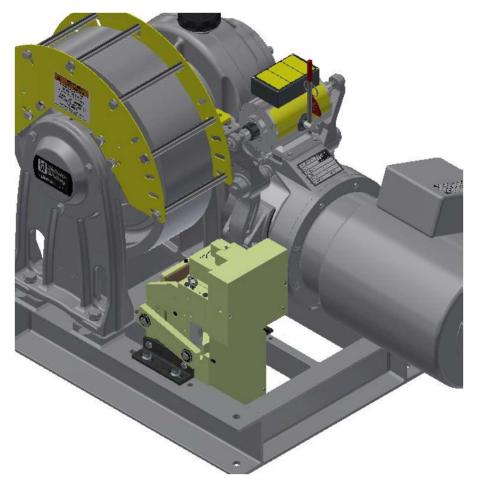
Machine	Machine Type	Gripper Type	Required Gripper Mounting Angles	Required Gripper Bracket	
		620L	620L-041	N/A	
	он	622L	622L-041	N/A	
	On	620H	620H-041	N/A	
		622H	622H-041	N/A	
		620L	620L-OD-041	N/A	
GT11	OD	622L	622L-OD-041	N/A	
6111	00	620H	620L-OD-041	N/A	
		622H	622L-OD-041	N/A	
		620L	N/A	GT11BS-205	
	BS	622L	N/A	GT11BS-205	
	BS	620H	N/A	GT11BS-205	
		622H	N/A	GT11BS-205	
		620L	620L-041	N/A	
	он	622L	622L-041	N/A	
		620H	620H-041	N/A	
		622H	622H-041	N/A	
		624H/626H	Standard	N/A	
		620L	620L-OD-041	N/A	
		622L	622L-OD-041	N/A	
GT31	OD	620H	620L-OD-041	N/A	
		622H	622L-OD-041	N/A	
		624H/626H	624-OD-041-1-L, 624-OD-041-1-R	N/A	
		620L	N/A	GT11BS-205	
		622L	N/A	GT11BS-205	
	BS	620H	N/A	GT11BS-205	
		622H	N/A	GT11BS-205	
		624H/626H	N/A	GT31BS-205	

H	GT Series Supplemental Manual	Date	Rev.	Page	Bulletin
W	PRINT & PARTS LIST SUPPLEMENT	11/26/24	А	Page 82	1187S

Overhead Machine Rope Gripper Mounting

NOTE:

CONSULT THE PROPER ROPE GRIPPER INSTALLATION MANUAL FOR THE INSTALLATION OF THE ROPE GRIPPER.


• Remove the standard mounting feet that come with the rope gripper.

• Attach the non-standard specified mounting angles listed in the Rope Gripper Machine Duty Table on the prior page to the rope gripper with the required hardware and properly torque.

• Verify the assembly will not interfere with elevator equipment (machine frame, traction or deflector sheave, machine beams, etc.) or any other obstructions.

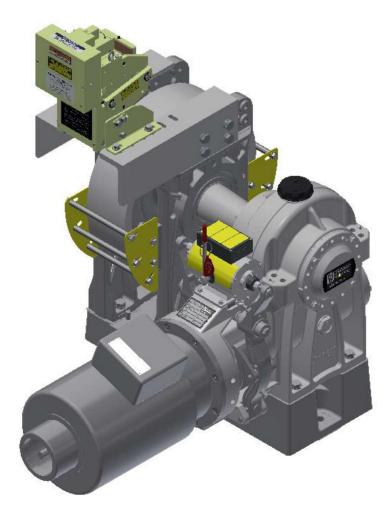
• Follow the rope gripper manual installation procedure and when appropriate attach the mounting angles to the machine base.

• See the figure below for an illustration of a finished installation.

Τ	GT Series Supplemental Manual	Date	Rev.	Page	Bulletin
W	PRINT & PARTS LIST SUPPLEMENT	11/26/24	А	Page 83	1187S

Basement Machine Rope Gripper Mounting

NOTE:


CONSULT THE PROPER ROPE GRIPPER INSTALLATION MANUAL FOR THE INSTALLATION OF THE ROPE GRIPPER.

• If not already completed, attach the rope gripper brackets specified in the Rope Gripper Machine Duty Table to the machine stands with the required hardware and properly torque.

• Verify the assembly will not interfere with elevator equipment (machine frame, traction or deflector sheave, machine beams, etc.) or any other obstructions.

• Follow the rope gripper manual installation procedure and when appropriate attach the mounting angles to the mounting brackets.

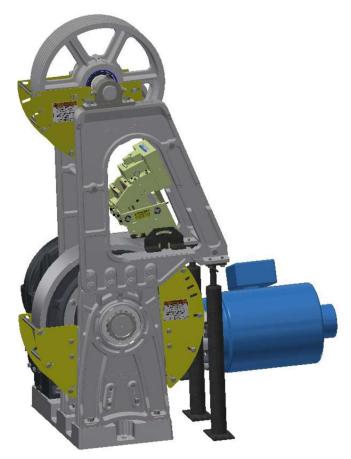
• See the image below for an illustration of a finished installation.

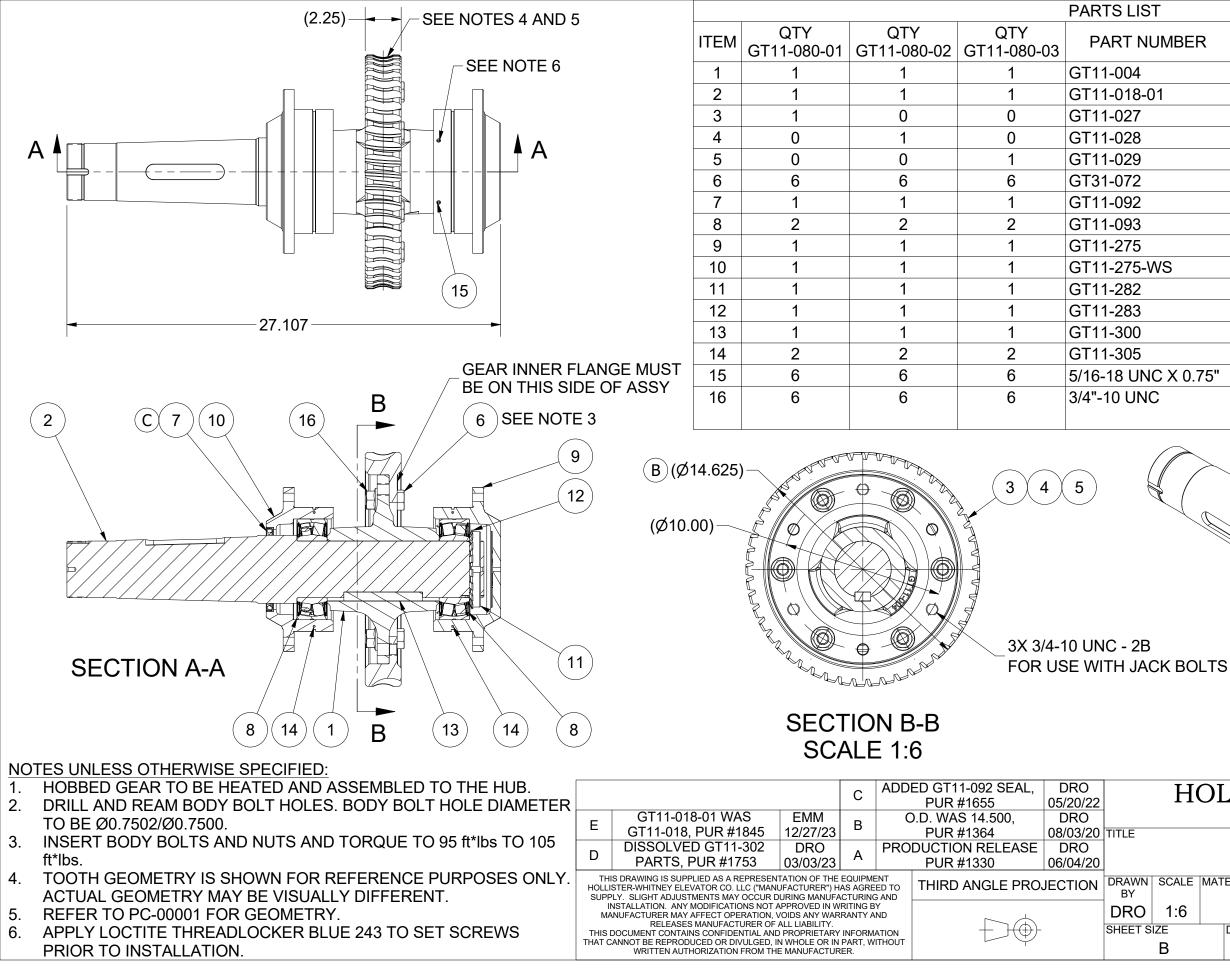
Η	GT Series Supplemental Manual	Date Rev		Page	Bulletin
W	PRINT & PARTS LIST SUPPLEMENT	11/26/24	А	Page 84	1187S

Basement Machine Rope Gripper Mounting

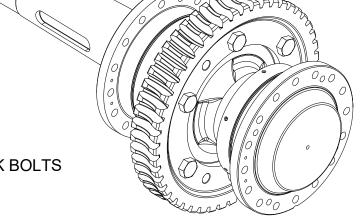
NOTE:

CONSULT THE PROPER ROPE GRIPPER INSTALLATION MANUAL FOR INSTALLATION OF THE ROPE GRIPPER.


• Remove the standard mounting feet that come with the rope gripper.

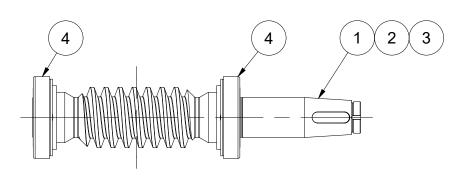

• Attach the non-standard specified mounting angles in the Rope Gripper Machine Duty Table to the rope gripper with the required hardware and properly torque.

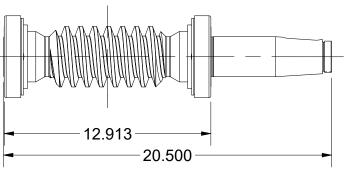
• Verify the assembly will not interfere with elevator equipment (machine frame, traction or deflector sheave, machine beams, etc.) or any other obstructions.


• Follow the rope gripper manual installation procedure and when appropriate attach the mounting angles to the machine up-stand.

• See image below for an illustration of a finished installation.

Т	
UMBER	DESCRIPTION
	HUB, GEAR
)1	SHAFT, WHEEL, TRACTION
	GEAR, 7/8" PITCH, SINGLE LEAD
	GEAR, 7/8" PITCH, DOUBLE LEAD
	GEAR, 7/8" PITCH, TRIPLE LEAD
	BOLT, BODY, GEAR
	GREASE SEAL
	BEARING, ROLLER, SPHERICAL
	ECCENTRIC
NS	ECCENTRIC, TRACTION WHEEL SIDE
	NUT, LOCK, SHAFT
	WASHER, LOCK, SHAFT
	KEY, SHAFT, WHEEL
	O-RING, ECCENTRIC
C X 0.75"	SCREW, SET, HEX, CONE POINT
C	NUT, HEX, SERRATED FLANGE,
	GRADE 5, ZINC-PLATED

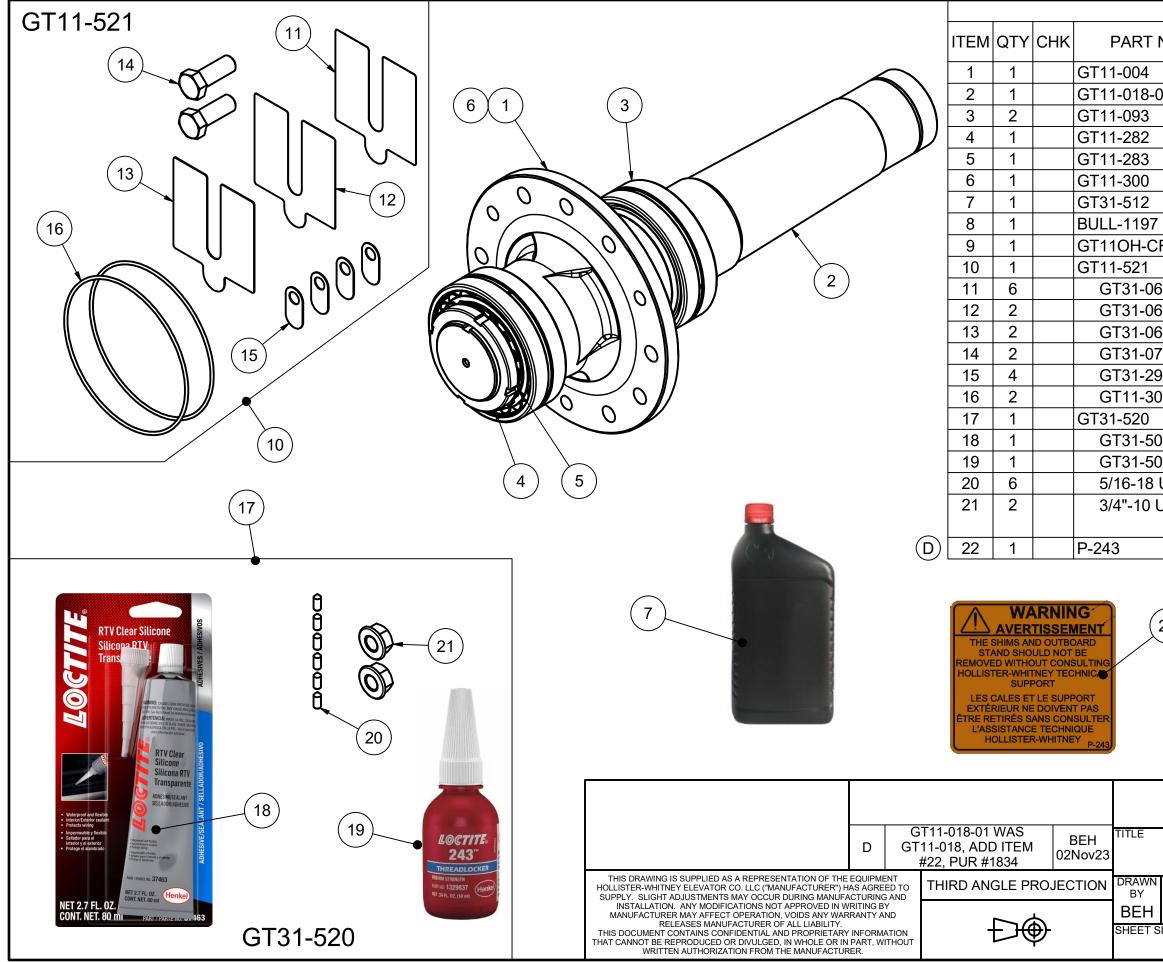



WEIGHT: 230 lbmass HOLLISTER-WHITNEY ELEVATOR CO. LLC

ASSY, CENTER

	SCALE	MATERIAL		REFERENCE TOL.
	1:6	SEE PARTS LIS	ST	ALL DIMENSIONS REFERENCE UNLESS OTHERWISE SPECIFIED
SIZE DATE				GT11-080
	В	4/30/2020		SHEET 1 OF 1

PARTS LIST								
ITEM	QTY GT11-294-01			PART NUMBER	DESCRIPTION			
1	1	0	0	GT11-047	WORM, FINISHED, 7/8" SINGLE			
2	0	1	0	GT11-048	WORM, FINISHED, 7/8" DOUBLE			
3	0	0	1	GT11-049	WORM, FINISHED, 7/8" TRIPLE			
4	2	2	2	GT31-090	BEARING, ROLLER, TAPERED			



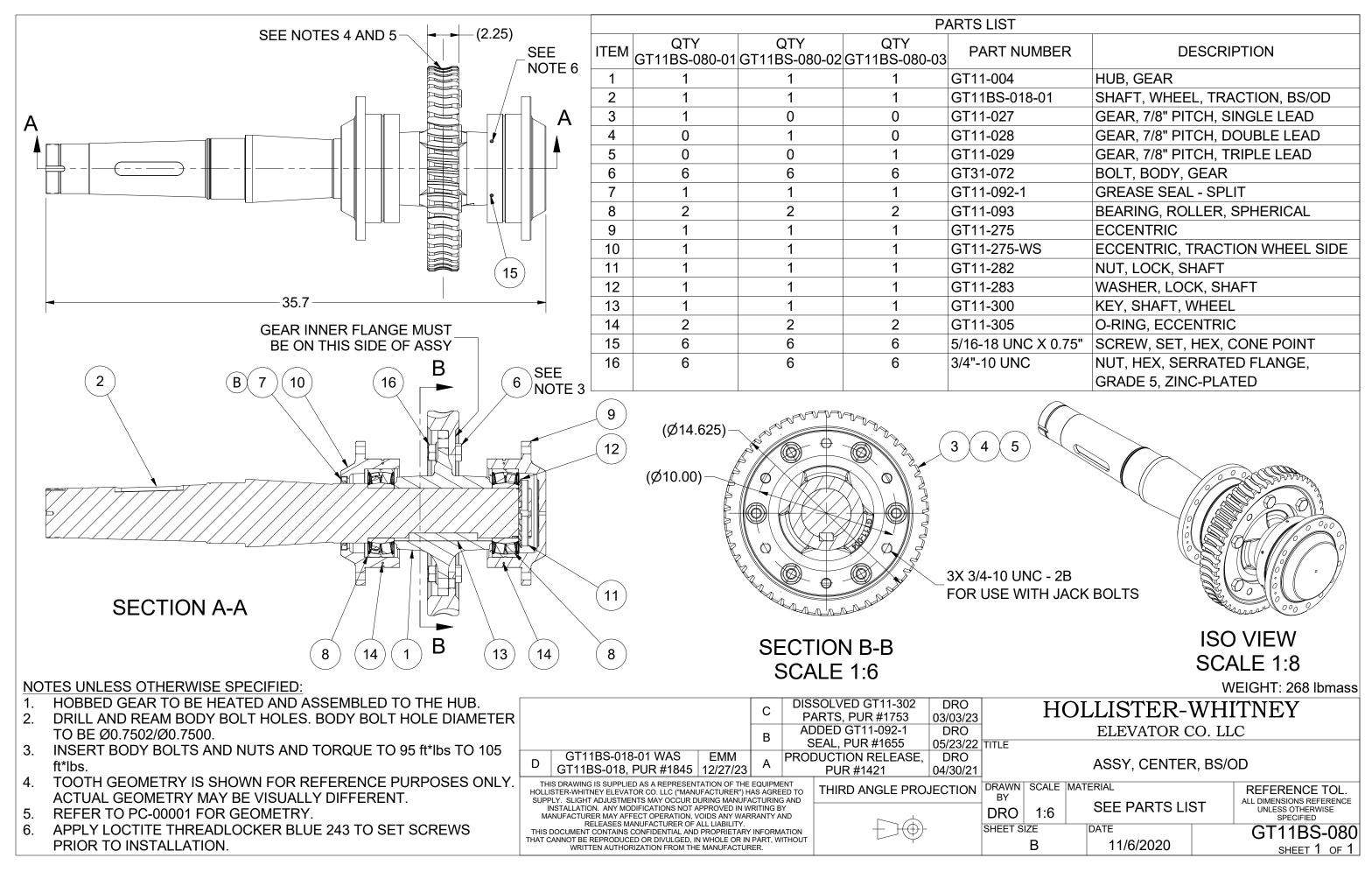
Ø5.118

WEIGHT: 43 lbmass

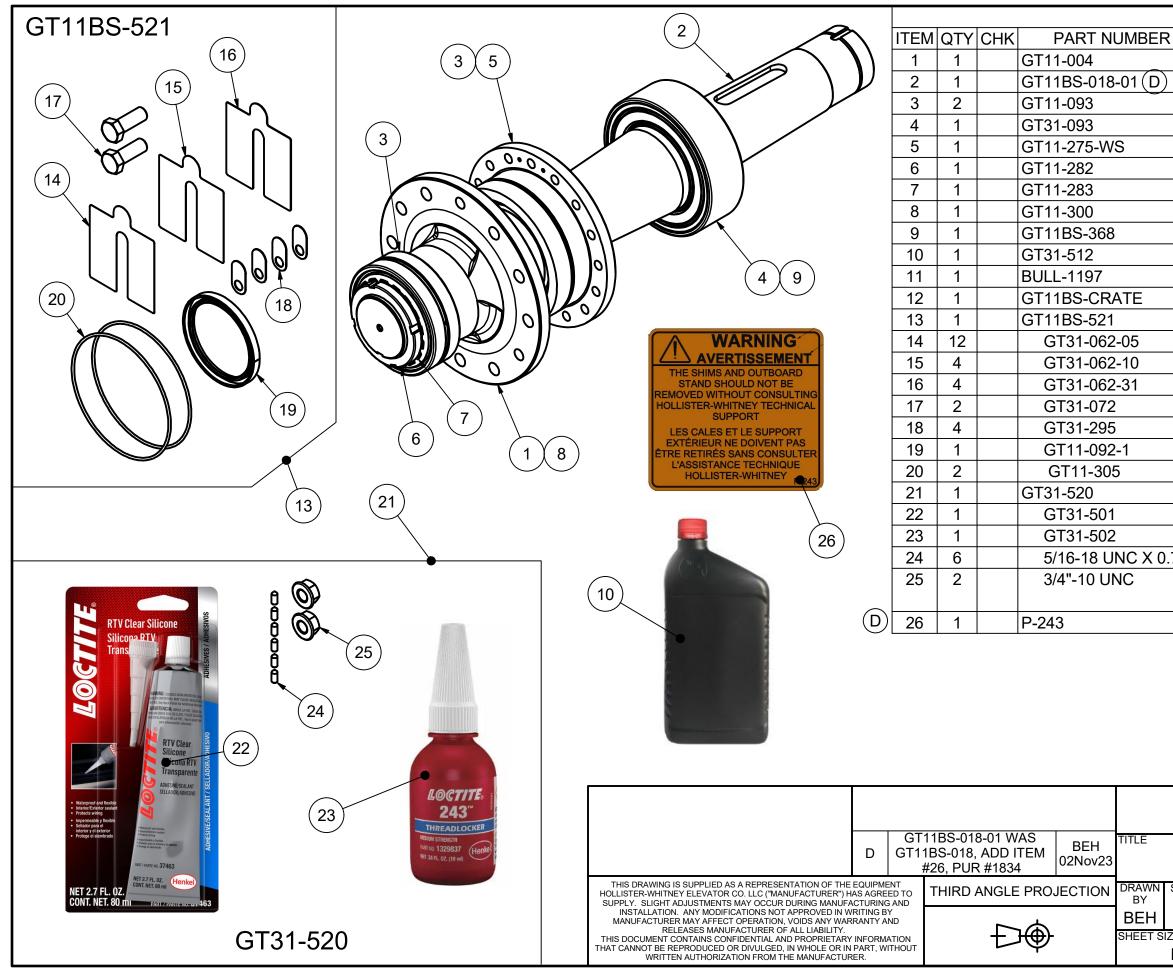
						HC	DLLISTER-	WHI	ITNEY
	В	U	PDATED VIEWS,	DRO	1		ELEVATOR C	CO. LL	C .
	D		PUR #1764	04/26/23	TITLE				
	А	PROE	DUCTION RELEASE, PUR #1330	DRO 06/04/20		ASS	SY, WORM SHAFT	AND E	BEARING
THIS DRAWING IS SUPPLIED AS A REPRESENTATI HOLLISTER-WHITNEY ELEVATOR CO. LLC ("MANUFAC	CTURER") HAS AGREE	ED TO	THIRD ANGLE PRO	JECTION	DRAWN BY	SCALE N	IATERIAL		REFERENCE TOL.
SUPPLY, SLIGHT ADJUSTMENTS MAY OCCUR DURING MANUFACTURING AND INSTALLATION. ANY MODIFICATIONS NOT APPROVED IN WRITING BY MANUFACTURER MAY AFFECT OPERATION, VOIDS ANY WARRANTY AND RELEASES MANUFACTURER OF ALL LIABILITY. THIS DOCUMENT CONTAINS CONFIDENTIAL AND PROPRIETARY INFORMATION THAT CANNOT BE REPRODUCED OR DIVULGED. IN WHOLE OR IN PART, WITHOUT			\sim		DRO	1:6	SEE PARTS LIS	ST	ALL DIMENSIONS REFERENCE UNLESS OTHERWISE SPECIFIED
					SHEET SI	IZE	DATE		GT11-294
WRITTEN AUTHORIZATION FROM THE MA		1001	Т			А	4/30/2020		SHEET 1 OF 1

PARTS I	IST
NUMBER	DESCRIPTION
	HUB, GEAR
01(D)	SHAFT, WHEEL, TRACTION
	BEARING, ROLLER, SPHERICAL
	NUT, LOCK, SHAFT
	WASHER, LOCK, SHAFT
	KEY, SHAFT, WHEEL
	OIL, GEAR (1 qt.)
	MANUAL, RETROFIT (NOT SHOWN)
RATE	CRATE (NOT SHOWN)
	KIT, SHIM AND SEAL
62-05	SHIM, STAND, OUTBOARD
62-10	SHIM, STAND, OUTBOARD
62-31	SHIM, STAND, OUTBOARD
72	BOLT, BODY, GEAR
95	SHIM, ECCENTRIC, EDGE BONDED
05	O-RING, ECCENTRIC
	KIT, HARDWARE
D1	TUBE, SILICONE
02	THREAD LOCKER, 243
UNC X 0.75"	SCREW, SET, HEX, CONE POINT
UNC	NUT, HEX, SERRATED FLANGE,
	GRADE 5, ZINC-PLATED
	LABEL, WARNING
22)	

WEIGHT: 141.3 lbmass HOLLISTER-WHITNEY ELEVATOR CO. LLC

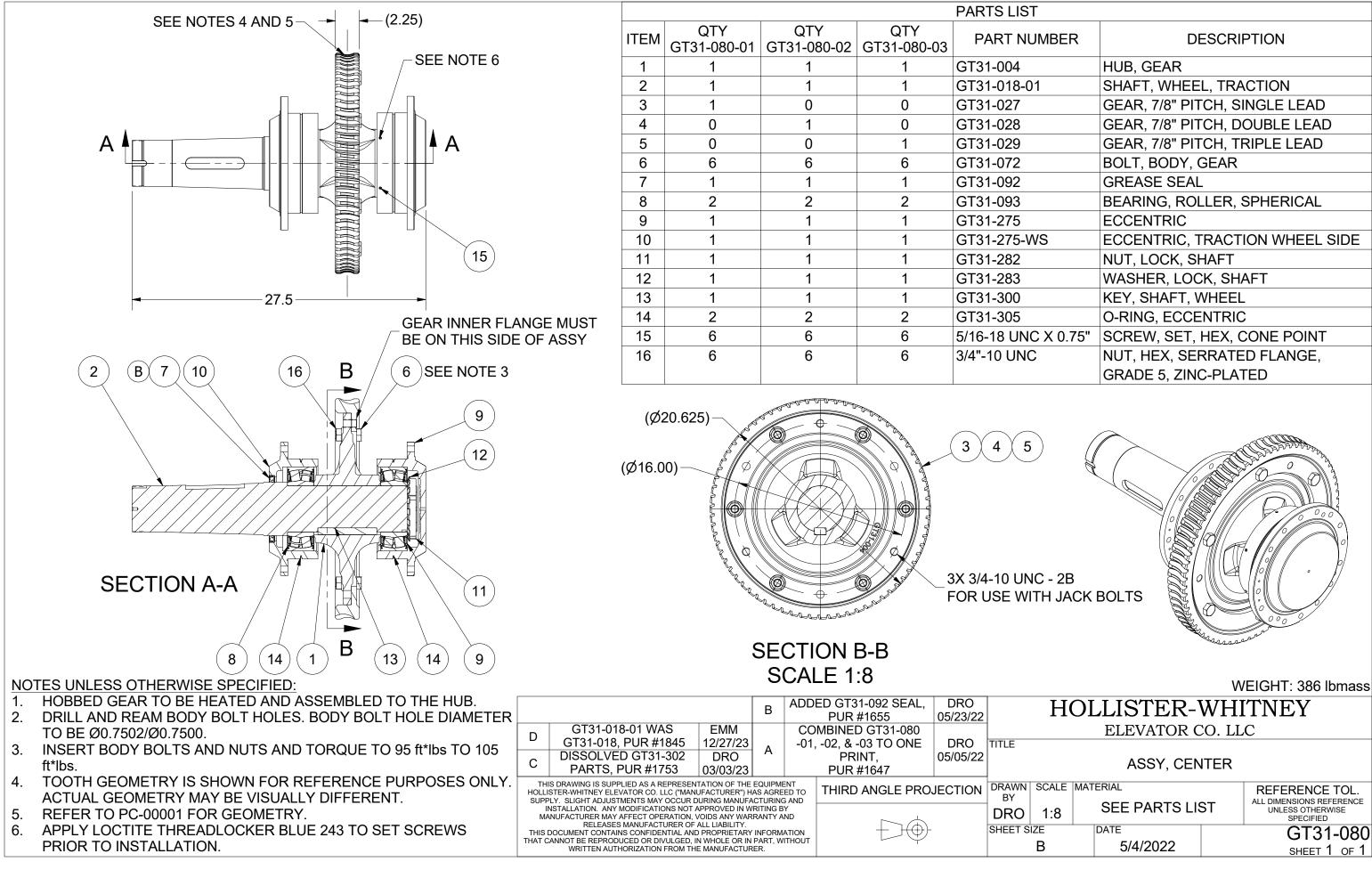

KIT, RETROFIT, GT110H

	SCALE	MATERIAL	REFERENCE TOL.
	1:4	N/A	ALL DIMENSIONS REFERENCE UNLESS OTHERWISE SPECIFIED
5	IZE	DATE	GT11-500-KT
В		9/16/2023	SHEET 1 OF 1


		PART LIST				
	4 ITE	EM Q	TY	PART NAME	MANUFACTURER	MANUFACTURER PART NUMBER
	1	1	1	SPANNER, HOOK, ADJUSTABLE	MARTIN TOOL	474A
	2	2	1	DYE, LAYOUT, SPRAY	SPRAYON	SP603
		3 .	1	STRAP, RATCHET, 2" WIDE X 12' LONG	LOAD LUGGER	60513X12
		4	1	KIT, INDICATOR, DIAL, IMPERIAL	SHARS	303-2710
	5	5	1	REAMER, SQUARE END, 3/4"	MULTIPLE	-
	6	6 ⁻	1	EYEBOLT, HOISTING, SHOULDER, 3/8" X 1"	MULTIPLE	-
-2	7	7 :	3 I	EYEBOLT, HOISTING, SHOULDER, 1/2" X 1-1/2"	MULTIPLE	-
	8	8 .	1	WRENCH, ALLEN, T-HANDLE, 5/32"	EKLIND	31310
	9	9 .	1	PASTE, INDICATOR, TAMPER	DYKEM	83316
	10	0 3	3	NUT, FLANGE, SERRATED, 1/2"	MULTIPLE	-
	11	1 2	2	BOLT, FLANGE, SERRATED, 1/2" X 1-1/2"	MULTIPLE	-
		2	1	SOCKET, DEEP WELL, 12-pt, 9/16", DRIVE, 1/2"	PROTO	J7318S
Someth		3 2	2	NUT, HEX, HEAVY, 3/4"	MULTIPLE	-
Sprayor	14	4 2	2	WASHER, HEAVY, 3/4"	MULTIPLE	-
			CK	1. EQUIVA H-W ENG 2. ALL PAR CARDBC THE H-W	LESS OTHERWISE LENTS ARE ALLOW GINEERING APPRO TS ARE TO BE PRO	/ED WITH PRIOR VAL. VIDED IN A ABEL DISPLAYING T11-500-TLKT).
	THIS DRAWING IS SUPPLIED AS A REPRESENTATION HOLLISTER-WHITNEY ELEVATOR CO. LLC ("MANUFACT SUPPLY. SLIGHT ADJUSTMENTS MAY OCCUR DURING INSTALLATION. ANY MODIFICATIONS NOT APPRO MANUFACTURER MAY AFFECT OPERATION, VOIDS. RELEASES MANUFACTURER OF ALL LI/ THIS DOCUMENT CONTAINS CONFIDENTIAL AND PROF THAT CANNOT BE REPRODUCED OR DIVULGED, IN WHC WRITTEN AUTHORIZATION FROM THE MAN	CTURER") H NG MANUFA ROVED IN W S ANY WAR LIABILITY. OPRIETARY HOLE OR IN	IAS AGR ACTURIN (RITING RRANTY) (INFORM PART, V	PRODUCTION RELEASE BEH PUR #1824 12Oct23 MENT THIRD ANGLE PROJECTION BY BY AND BEH MATION Free Size	LISTER-WH ELEVATOR CO. 1 , TOOL, RETROFIT RIAL N/A DATE 10/12/2023	LLC

	1				
				ARTS LIST	
	ITEM	QTY	PART NUMBER	DESC	RIPTION
	1	6	GT31-062-05	SHIM, STAND, OL	JTBOARD
	2	2	GT31-062-10	SHIM, STAND, OL	JTBOARD
	3	2	GT31-062-31	SHIM, STAND, OL	JTBOARD
	4	4	GT31-295	SHIM, ECCENTRI	C, EDGE BONDED
	5	2	GT11-305	O-RING, ECCENT	RIC
	6	2	GT31-072	BOLT, BODY, GE/	٩R
\sim \sim	7	1	N/A	BAG, PLASTIC (N	OT SHOWN)
(6) (3)	8	1	N/A	LABEL (NOT SHO	WN)
		4	1. PARTS TO BE 2. LABEL WITH F	,	TIC BAG. PLACED ON BAG. WEIGHT: 1.1 lbmass
				ISTER-WH LEVATOR CO. L	
A PRODUCTION RELEAT		EH Dct23	TITLE	KIT, SHIM AND SEA	AL.
THIS DRAWING IS SUPPLIED AS A REPRESENTATION OF THE EQUIPMENT HOLLISTER-WHITNEY ELEVATOR CO. LLC ("MANUFACTURER") HAS AGREED TO SUPPLY, SLIGHT ADJUSTMENTS MAY OCCUR DURING MANUFACTURING AND INSTALLATION. ANY MODIFICATIONS NOT APPROVED IN WRITING BY MANUFACTURER MAY AFFECT OPERATION, VOIDS ANY WARRANTY AND RELEASES MANUFACTURER OF ALL LIABILITY.			BEH 1:4	N/A	REFERENCE TOL. ALL DIMENSIONS REFERENCE UNLESS OTHERWISE SPECIFIED
THIS DOCUMENT CONTAINS CONFIDENTIAL AND PROPRIETARY INFORMATION THAT CANNOT BE REPRODUCED OR DIVULGED, IN WHOLE OR IN PART, WITHOUT WRITTEN AUTHORIZATION FROM THE MANUFACTURER.	₽	:	SHEET SIZE DAT A	E 10/5/2023	GT11-521 SHEET 1 OF 1

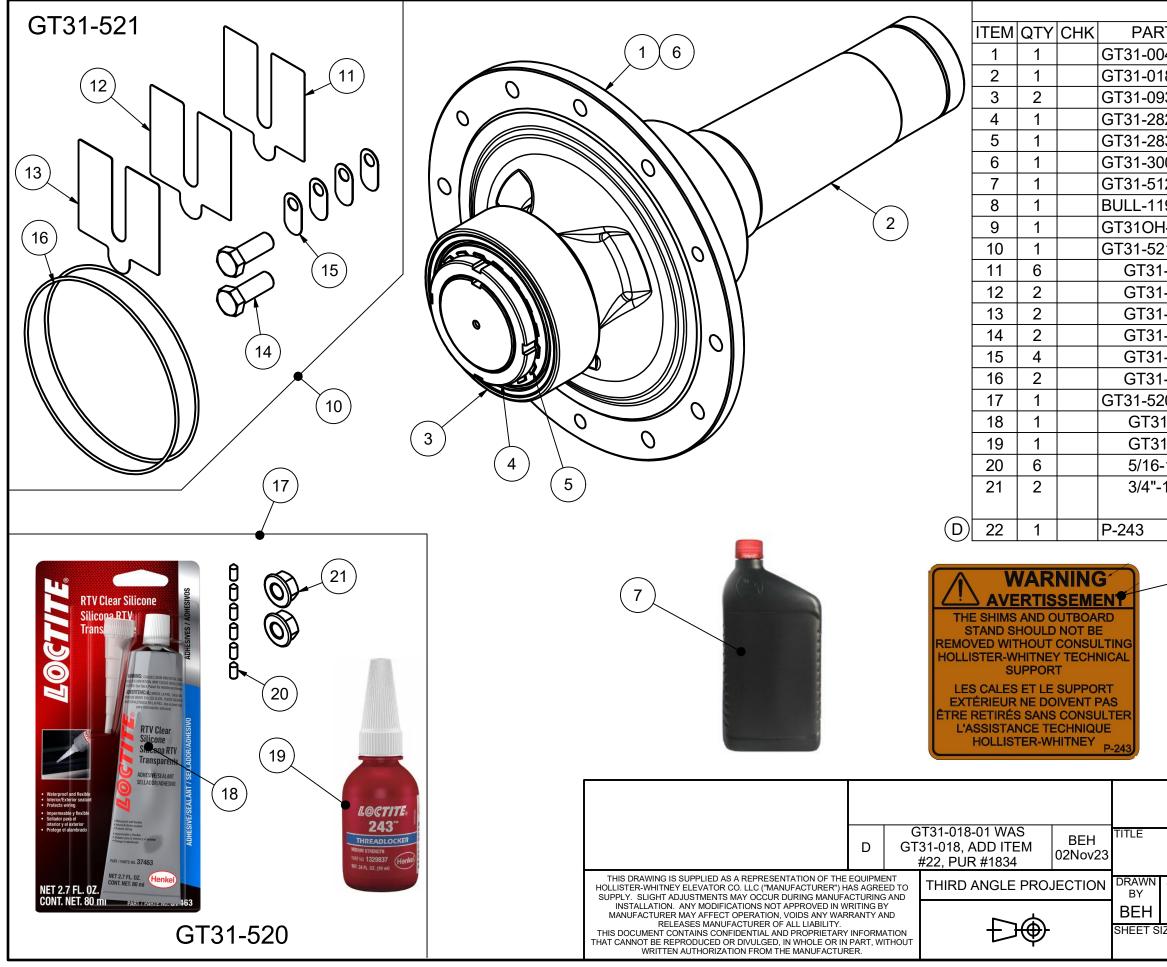
Page 90



PAR	TS LIST								
٦	DESCRIPT	ION							
	HUB, GEAR								
)	SHAFT, WHEEL, TRACTIC	DN, BS/OD							
	BEARING, ROLLER, SPHERICAL								
	BEARING, ROLLER, SPHERICAL								
	ECCENTRIC, TRACTION WHEEL SIDE								
	NUT, LOCK, SHAFT								
WASHER, LOCK, SHAFT									
KEY, SHAFT, WHEEL									
	RETAINING RING, SPIRAL, MEDIUM DUTY								
OIL, GEAR (1 qt.)									
	MANUAL, RETROFIT (NO	T SHOWN)							
	CRATE (NOT SHOWN)								
	KIT, SHIM AND SEAL								
	SHIM, STAND, OUTBOAR	D							
	SHIM, STAND, OUTBOAR	D							
	SHIM, STAND, OUTBOAR	D							
	BOLT, BODY, GEAR								
	SHIM, ECCENTRIC, EDGE	BONDED							
	GREASE SEAL - SPLIT								
	O-RING, ECCENTRIC								
	KIT, HARDWARE								
	TUBE, SILICONE								
	THREAD LOCKER, 243								
).75"	SCREW, SET, HEX, CONE								
	NUT, HEX, SERRATED FL	ANGE, GRADE 5,							
	ZINC-PLATED								
	LABEL, WARNING								
	WE	IGHT: 221.4 lbmass							
H	OLLISTER-WHI	TNEY							
	ELEVATOR CO. LL								
	KIT, RETROFIT, GT11 B	S/OD							
SCALE	MATERIAL	REFERENCE TOL.							
	NI/A	ALL DIMENSIONS REFERENCE							

1:5	N/A	ALL DIMENSIONS REFERENCE UNLESS OTHERWISE SPECIFIED
BIZE	date 9/16/2023	GT11BS-500-KT SHEET 1 OF 1

	Ι				
			i	ARTS LIST	
					SCRIPTION
		1 12	GT31-062-05	SHIM, STAND,	
(2 4	GT31-062-10	SHIM, STAND,	
	\checkmark	3 4	GT31-062-31	SHIM, STAND,	
			GT31-295		TRIC, EDGE BONDED
			GT11-305	O-RING, ECCE	INTRIC
		-	GT31-072	BOLT, BODY, (
(6)		7 1	GT11-092-1	GREASE SEAL	SPLIT
		3 1	N/A	BAG, PLASTIC	(NOT SHOWN)
		9 1	N/A	LABEL (NOT S	HOWN)
		4		PLACED IN PLAS	STIC BAG. O PLACED ON BAG. WEIGHT: 1.4 lbmass
				ELEVATOR CO	
			TITLE		
	A PRODUCTION RELEASE PUR #1820	BEH 05Oct23	i I	KIT, SHIM AND	SEAL
THIS DRAWING IS SUPPLIED AS A REPRESENTATION OF THE HOLLISTER-WHITNEY ELEVATOR CO. LLC ("MANUFACTURER") H, SUPPLY, SLIGHT ADJUSTMENTS MAY OCCUR DURING MANUFA INSTALLATION, ANY MODIFICATIONS NOT APPROVED IN W MANUFACTURER MAY AFFECT OPERATION, VOIDS ANY WAR RELEASES MANUFACTURER OF ALL LIABILITY. THIS DOCUMENT CONTAINS CONFIDENTIAL AND PROPRIETARY THAT CANNOT BE REPRODUCED OR DIVULGED, IN WHOLE OR IN WRITTEN AUTHORIZATION FROM THE MANUFACTUR	AS AGREED TO CTURING AND RITING BY RANTY AND INFORMATION PART, WITHOUT		DRAWN SCALE MATERI BY 1:4 SHEET SIZE DATERI A A	N/A	REFERENCE TOL. ALL DIMENSIONS REFERENCE UNLESS OTHERWISE SPECIFIED GT11BS-521 SHEET 1 OF 1


PARTS LIST						
ITEM QTY PART NUMBER			DESCRIPTION			
		GT11-027	GEAR, 7/8" PITCH, SINGLE LEAD			
1 1 GT11-028			GEAR, 7/8" PITCH, DOUBLE LEAD			
		GT11-029	GEAR, 7/8" PITCH, TRIPLE LEAD			
2	2	GT31-062-05	SHIM, STAND, OUTBOARD, 0.0050" THK			
3	4	GT31-062-10	SHIM, STAND, OUTBOARD, 0.0100" THK			
4 2 GT31-062-31			SHIM, STAND, OUTBOARD, 0.0310" THK			
			BOLT, BODY, GEAR			
6 7 GT31-087			SHIM, CAP, BEARING			
7 1 GT31-287		GT31-287	SEAL, SHAFT, RADIAL			
8	1	GT31-287-1	SEAL, SHAFT, RADIAL			
GT11-294-01 ASSY, W0		GT11-294-01	ASSY, WORM SHAFT AND BEARING, 7/8" SINGLE			
9	1	GT11-294-02	ASSY, WORM SHAFT AND BEARING, 7/8" DOUBLE			
		GT11-294-03	ASSY, WORM SHAFT AND BEARING, 7/8" TRIPLE			
10	4	GT31-295 SHIM, ECCENTRIC, EDGE BONDED				
11	1	GT31-301	KEY, SHAFT, WORM			
12						
13	1	GT31-310	NUT, LOCK, SHAFT			
14	1	GT31-311	WASHER, LOCK, SHAFT			
15 6 3/4"-10 UNC			NUT, HEX, SERRATED FLANGE, GRADE 5, ZINC-PLATED			
16 0.75 OZ. 80038 F			PRUSSIAN BLUE			
17	2 gal	MOBIL SHC-636	OIL, GEAR, HIGH PRESSURE			
18	10 OZ.	SILICONE	CLEAR RTV SILICONE SEALANT - WL099110C			
			WEIGHT: 101 lbmass			
			HOLLISTER-WHITNEY			
			ELEVATOR CO. LLC			
		A	PRODUCTION RELEASE, DRO PUR #1432 01/13/21 WORM & GEAR REPLACEMENT SET			
HOLLISTE	R-WHITNEY ELEVATO) AS A REPRESENTATION OF THE EQUIPM DR CO. LLC ("MANUFACTURER") HAS AGRI	ED TO THIRD ANGLE PROJECTION DOWN SOALE MATERIAL REFERENCE TOL.			
INST	ALLATION. ANY MOD	ITS MAY OCCUR DURING MANUFACTURIN IFICATIONS NOT APPROVED IN WRITING I ECT OPERATION, VOIDS ANY WARRANTY				
RELEASES MANUFACTURER OF ALL LIABILITY. THIS DOCUMENT CONTAINS CONFIDENTIAL AND PROPRIETARY INFORMATION						
THAT CANN		D OR DIVULGED, IN WHOLE OR IN PART, V ZATION FROM THE MANUFACTURER.	A 1/5/2021 SHEET 1 OF 1			

T						
UMBER	ABER DESCRIPTION					
	HUB, GEAR					
D1	SHAFT, WHEEL, TRACTION					
	GEAR, 7/8" PITCH, SINGLE LEAD					
	GEAR, 7/8" PITCH, DOUBLE LEAD					
	GEAR, 7/8" PITCH, TRIPLE LEAD					
	BOLT, BODY, GEAR					
	GREASE SEAL					
	BEARING, ROLLER, SPHERICAL					
	ECCENTRIC					
WS	ECCENTRIC, TRACTION WHEEL SIDE					
	NUT, LOCK, SHAFT					
	WASHER, LOCK, SHAFT					
	KEY, SHAFT, WHEEL					
	O-RING, ECCENTRIC					
C X 0.75"	SCREW, SET, HEX, CONE POINT					
С	NUT, HEX, SERRATED FLANGE,					
	GRADE 5, ZINC-PLATED					

	SCALE	E MATERIAL REFERENCE TOL.	
1.8 SEE PARTS LIST UNLESS OTHERWISE			
	1:8		
DATE GT31-0	IZE	DATE GT31-080	
	В		

				PA	RTS LIST			
	ITEM	QTY GT31-294-01	QTY GT31-294-02	QTY GT31-294-0	PART 3 NUMBER	DESCR	RIPTION	
	1	1	0	0	GT31-047	WORM, FINISHED,	, 7/8" SINGLE	
	2	0	1	0	GT31-048	WORM, FINISHED,	, 7/8" DOUBLE	
	3	0	0	1	GT31-049	WORM, FINISHED,	, 7/8" TRIPLE	
	4	2	2	2	GT31-090	BEARING, ROLLEF	R, TAPERED	
	6.163-	-24.625		-		N	WEIGHT: 52 lbmas	
		BUF	PDATED VIEWS, PUR #1764	DRO 04/26/23	HOLL	JISTER-WHI	ITNEY	
		COM	IBINED GT31-294			ELEVATOR CO. LL	C.	
		A -01, -	02, & -03 TO ONE PRINT, PUR #1647	DRO TITL 05/04/22		VORM SHAFT AND E	BEARING	
THIS DRAWING IS SUPPLIED AS A REPRES HOLLISTER-WHITNEY ELEVATOR CO. LLC ("M. SUPPLY. SLIGHT ADJUSTMENTS MAY OCCU INSTALLATION. ANY MODIFICATIONS NC MANUFACTURER MAY AFFECT OPERATIO RELEASES MANUFACTURER THIS DOCUMENT CONTAINS CONFIDENTIAL A THAT CANNOT BE REPRODUCED OR DIVULGE	Anufacturi R During M/ DT Approvei N, Voids An' Of All Liabii And Proprie	ER") HAS AGREED TO ANUFACTURING AND D IN WRITING BY Y WARRANTY AND LITY. ETARY INFORMATION			ET SIZE	EE PARTS LIST	REFERENCE TOL. ALL DIMENSIONS REFERENCE UNLESS OTHERWISE SPECIFIED GT31-294	
	AND PROPRIE D, IN WHOLE	TARY INFORMATION OR IN PART, WITHOUT		SHE	A	^{TE} 5/4/2022	GT31- _{SHEET} 1	

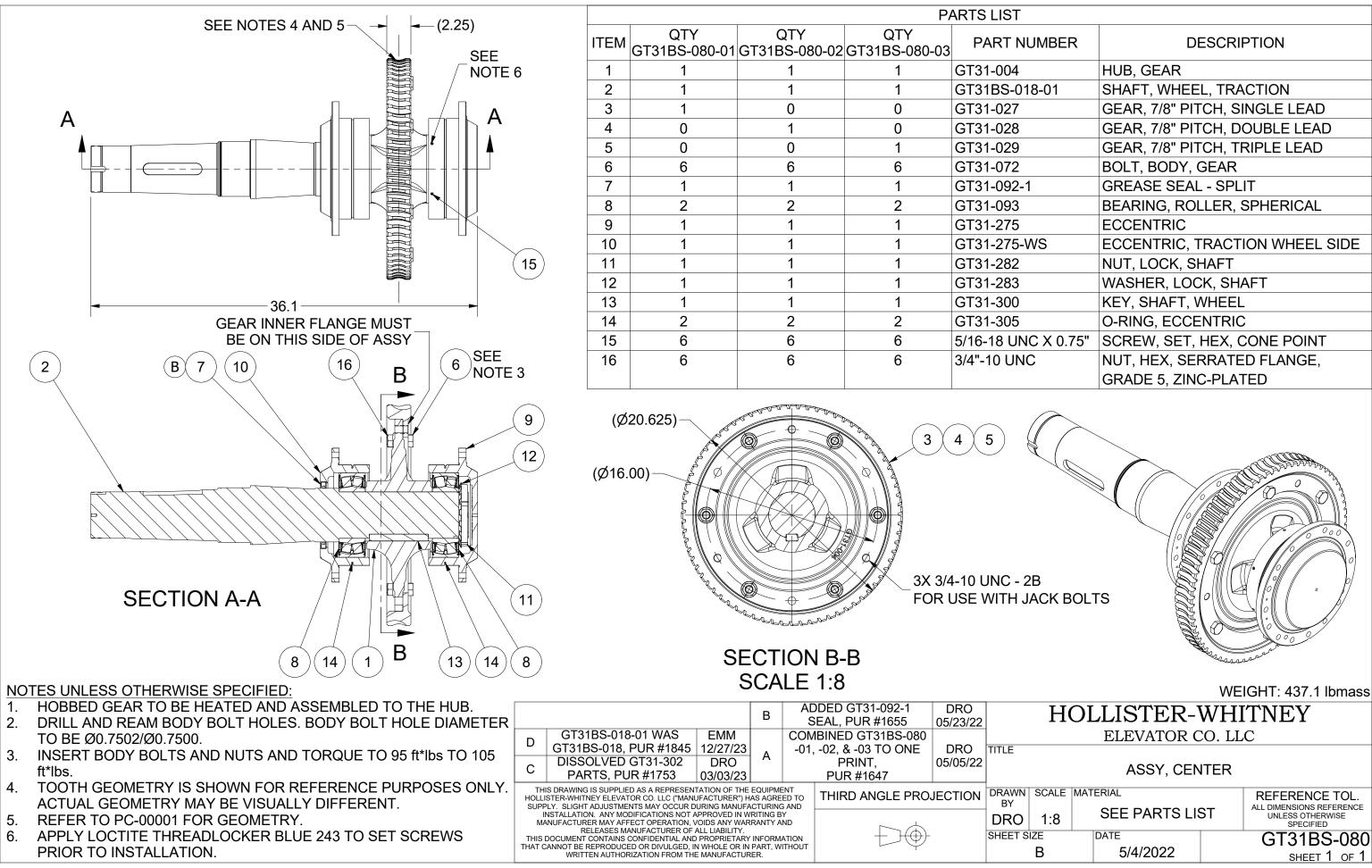
PARTS LIST						
RT NUMBER	DESCRIPTION					
04	HUB, GEAR					
18-01(D)	SHAFT, WHEEL, TRACTION					
93	BEARING, ROLLER, SPHERICAL					
82	NUT, LOCK, SHAFT					
83	WASHER, LOCK, SHAFT					
00	KEY, SHAFT, WHEEL					
12	OIL, GEAR (1 qt.)					
197	MANUAL, RETROFIT (NOT SHN)					
H-CRATE	CRATE (NOT SHOWN)					
21	KIT, SHIM AND SEAL					
1-062-05	SHIM, STAND, OUTBOARD					
1-062-10	SHIM, STAND, OUTBOARD					
1-062-31	SHIM, STAND, OUTBOARD					
1-072	BOLT, BODY, GEAR					
1-295	SHIM, ECCENTRIC, EDGE BOND					
1-305	O-RING, ECCENTRIC					
20	KIT, HARDWARE					
31-501	TUBE, SILICONE					
31-502	THREAD LOCKER, 243					
6-18 UNC X 0.75"	SCREW, SET, HEX, CONE POINT					
-10 UNC	NUT, HEX, SERRATED FLANGE,					
	GRADE 5, ZINC-PLATED					
	LABEL, WARNING					
\frown						

_____22

WEIGHT: 253.2 lbmass

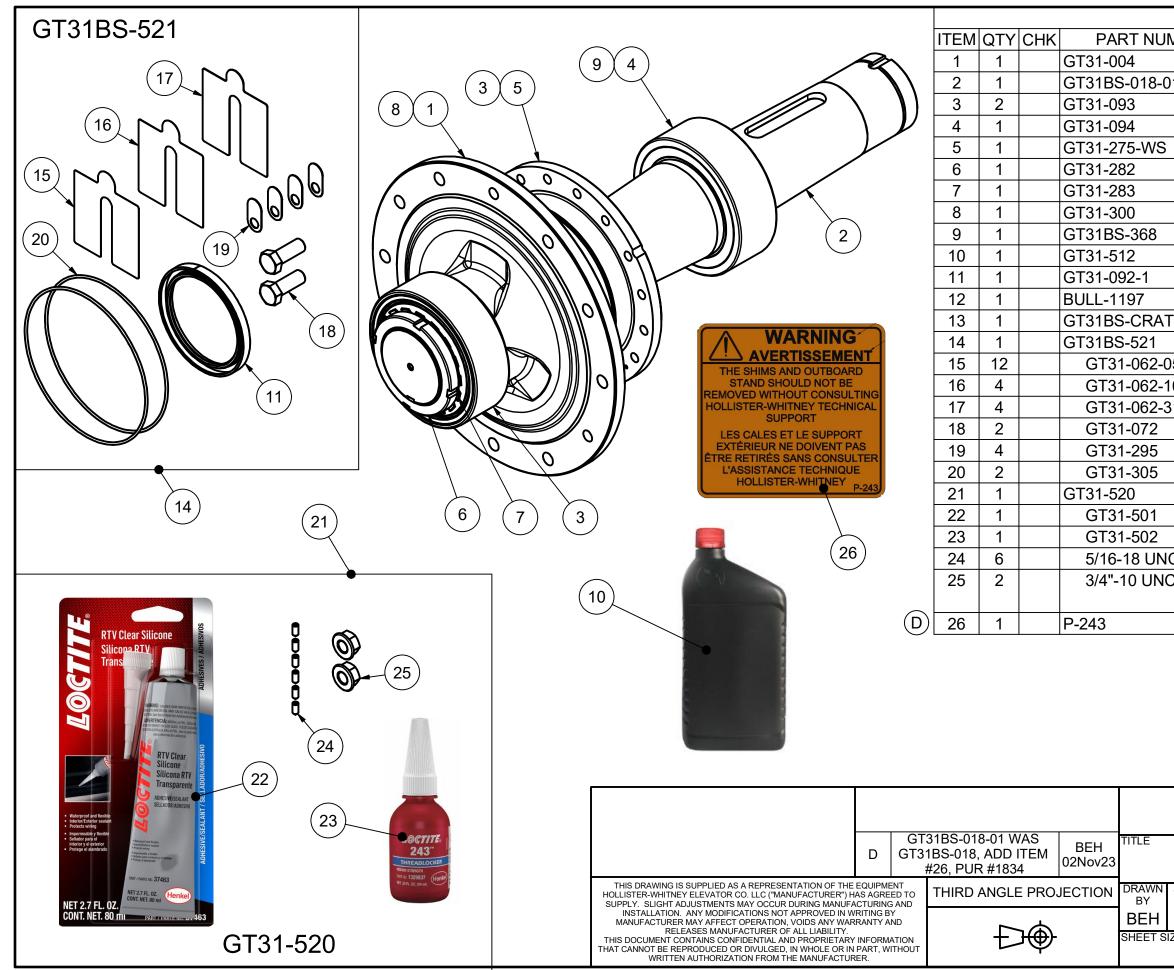
HOLLISTER-WHITNEY ELEVATOR CO. LLC

KIT, RETROFIT, GT310H

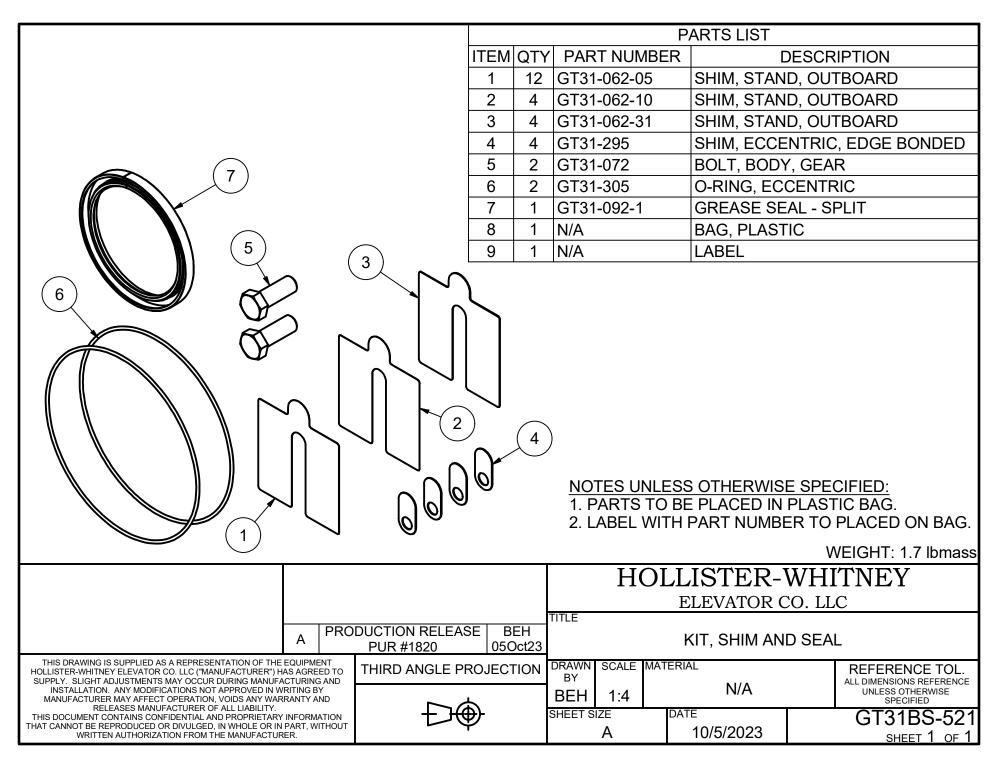

	SCALE	MATERIAL	REFERENCE TOL.
	1:4	N/A	ALL DIMENSIONS REFERENCE UNLESS OTHERWISE SPECIFIED
3	IZE	DATE	GT31-500-KT
B 9/16/20		9/16/2023	SHEET 1 OF 1

			PARTS LIST	Г	
	ITEM QTY	PART NUMBER		DESCRIPTIC	N
	1 1	GT31-501	TUBE, SILICONE		
	2 1	GT31-502	THREAD LOCKER	R, 243	
	3 6	5/16-18 UNC X 0.75"	SCREW, SET, HE	X, CONE POINT	
	4 2	3/4"-10 UNC	NUT, HEX, SERRA	ATED FLANGE, G	RADE 5, ZINC-PLATED
Image: state stat		Normality River de la construction de la co	1. PART HDPE 2. BAG NUME	S TO BE PLACED LDPE PLASTIC I TO HAVE LABEL	WISE SPECIFIED: D IN A 6.25" X 10.25" BAG. 1.5 MIL SIDE. INDICATING KIT PART SHOWN. WEIGHT: 0.4 lbmass
			HOI	LLISTER-V	VHITNEY
				ELEVATOR CO	D. LLC
	A	DUCTION RELEASE BEH PUR #1820 03Oct2		KIT, HARDW	ARE
THIS DRAWING IS SUPPLIED AS A REPRESENTATION OF TH HOLLISTER-WHITNEY ELEVATOR CO. LLC ("MANUFACTURER") SUPPLY. SLIGHT ADJUSTMENTS MAY OCCUR DURING MANUF INSTALLATION. ANY MODIFICATIONS NOT APPROVED IN MANUFACTURER MAY AFFECT OPERATION, VOIDS ANY WA RELEASES MANUFACTURER OF ALL LIABILITY.	HAS AGREED TO ACTURING AND WRITING BY		BEH 1:2	N/A	REFERENCE TOL. ALL DIMENSIONS REFERENCE UNLESS OTHERWISE SPECIFIED
THIS DOCUMENT CONTAINS CONFIDENTIAL AND PROPRIETAR THAT CANNOT BE REPRODUCED OR DIVULGED, IN WHOLE OR I WRITTEN AUTHORIZATION FROM THE MANUFACTU	N PART, WITHOUT	t t t t t t t t t t t t t t t t t t t	SHEET SIZE A	date 10/3/2023	GT31-520 sheet 1 оf 1

	ITEM		PART NUMBER		SCRIPTION
	1	6	GT31-062-05	SHIM, STAND,	
	2	2	GT31-062-10	SHIM, STAND,	
	3	2	GT31-062-31	SHIM, STAND,	
	4	4	GT31-295		TRIC, EDGE BONDED
	5	2	GT31-072	BOLT, BODY,	
	6	2	GT31-305	O-RING, ECCE	
\frown	7	1	N/A		C (NOT SHOWN)
(5)	8	1	N/A	LABEL (NOT S	SHOWN)
	90		HOLL	E PLACED IN PI PART NUMBER	LASTIC BAG. R TO PLACED ON BAG. WEIGHT: 1.1 lbmass
				ELEVATOR CO). LLC
A PRODUCTION RELEA PUR #1820	05	BEH 5Oct23	·	KIT, SHIM AND	SEAL
THIS DRAWING IS SUPPLIED AS A REPRESENTATION OF THE EQUIPMENT HOLLISTER-WHITNEY ELEVATOR CO. LLC ("MANUFACTURER") HAS AGREED TO SUPPLY. SLIGHT ADJUSTMENTS MAY OCCUR DURING MANUFACTURING AND INSTALLATION. ANY MODIFICATIONS NOT APPROVED IN WRITING BY MANUFACTURER MAY AFFECT OPERATION, VOIDS ANY WARRANTY AND RELEASES MANUFACTURER OF ALL LIABILITY.		CTION	BEH 1:4	N/A	REFERENCE TOL. ALL DIMENSIONS REFERENCE UNLESS OTHERWISE SPECIFIED
THIS DOCUMENT CONTAINS CONFIDENTIAL AND PROPRIETARY INFORMATION THAT CANNOT BE REPRODUCED OR DIVULGED, IN WHOLE OR IN PART, WITHOUT WRITTEN AUTHORIZATION FROM THE MANUFACTURER.	Ψ		SHEET SIZE DAT	10/5/2023	GT31-521 SHEET 1 OF 1


1 1 SPANNER, HOOK, ADJUSTABLE 2 1 STRAF, RACCHET, Z'WOUT, SPRAY 4 1 RT, INDICATOR, DIAL, IMPERIAL 6 1 EYEBOLT, HOISTING, SHOULDER, 132 X 1-1/2/ 10 1 PREMER, SQUARE, SERRATED, 1-2/ 11 2 NUT, FLANGE, SERRATED, 1-2/ 12 1 SOCKET, DEEP WELL, TANDELE, 532' 12 1 SOCKET, DEEP WELL, T2, pl 91'6', DRIVE, 1-12' 12 SOCKET, DEEP WELL, T2, pl 91'6', DRIVE, 1-12' 13 2 NUT, FLANGE, SERRATED, 1-2' 14 2 NUT, FLANGE, SERRATED, 1-2' 15 12 SOCKET, DEEP WELL, T2, pl 91'6', DRIVE, 1-2' 14 2 NUT, HEX, HEAVY, 34'' 15 2 NUT, FLANGE, SERRATED, 1-2' 16 2 NUT, FLANGE, SERRATED, 1-2' 17 10 1 1 18 2 NUT, FLANGE, SERRATED, 1-2' 1 16 <		ITEM QTY PART NUMBER 1 1 GT31-600 2 2 GT31-603 3 1 GT11-500-TLKT
	THIS DRAWING IS SUPPLIED AS A REPRESENTATION OF THE EQUIPMENT HOLLISTER-WHITNEY ELEVATOR CO. LLC ("MANUFACTURER") HAS AGREED SUPPLY. SLIGHT ADJUSTMENTS MAY OCCUR DURING MANUFACTURING AN INSTALLATION. ANY MODIFICATIONS NOT APPROVED IN WRITING BY MANUFACTURER MAY AFFECT OPERATION, VOIDS ANY WARRANTY AND RELEASES MANUFACTURER OF ALL LIABILITY. THIS DOCUMENT CONTAINS CONFIDENTIAL AND PROPRIETARY INFORMATIC THAT CANNOT BE REPRODUCED OR DIVULGED, IN WHOLE OR IN PART, WITHO WRITTEN AUTHORIZATION FROM THE MANUFACTURER.	

_	<u>Р</u>	AR	TS LIST			
R	DESCRIPTION					
			eave and Hub Pu			
		ROD, THREADED, 3/4"-10 UNC				
	KIT	, то	DOL, RETROFIT	, SHAF	T	
				\frown		
				(1)		
	\gg		/	\sim		
		\gg				
	\backslash					
		$\langle \rangle$				
	$\overline{}$		HN III			
				\mathscr{N}		
~			$\langle \rangle$	\bigcirc		
				\leq		
	>		\checkmark /	\backslash		
				$\overline{\ }$		
		\cap				
-	/		\mathbf{Y}		< Y <i>≫</i>	
	(2)			
		_				
_	~~~~	-				
			ERWISE SPECIF			
			31-600, AND GT			
			BOARD BOX W			
	-		H CLEARLY IND			
D	PAR	ΤN	UMBER.	\ \ //		
	WEIGHT: 12.3 lbmass					
	HOLLISTER-WHITNEY					
	ELEVATOR CO. LLC					
-						
	K	IT,	TOOL, RETROF	T, GT-	SERIES	
5	SCALE	MAT	ERIAL		REFERENCE TOL.	
	1:2		N/A		ALL DIMENSIONS REFERENCE UNLESS OTHERWISE	
δIZ			DATE	C	SPECIFIED	
	3		10/23/2023		SHEET 1 OF 1	
					2	


UMBER	DESCRIPTION	
	HUB, GEAR	
18-01	SHAFT, WHEEL, TRACTION	
	GEAR, 7/8" PITCH, SINGLE LEAD	
	GEAR, 7/8" PITCH, DOUBLE LEAD	
	GEAR, 7/8" PITCH, TRIPLE LEAD	
	BOLT, BODY, GEAR	
1	GREASE SEAL - SPLIT	
	BEARING, ROLLER, SPHERICAL	
	ECCENTRIC	
WS	ECCENTRIC, TRACTION WHEEL SIDE	
	NUT, LOCK, SHAFT	
	WASHER, LOCK, SHAFT	
	KEY, SHAFT, WHEEL	
	O-RING, ECCENTRIC	
IC X 0.75"	SCREW, SET, HEX, CONE POINT	
С	NUT, HEX, SERRATED FLANGE,	
	GRADE 5, ZINC-PLATED	

	SCALE	MATERIAL		REFERENCE TOL.
	1:8	SEE PARTS LIS	ST	ALL DIMENSIONS REFERENCE UNLESS OTHERWISE SPECIFIED
S	IZE	DATE		GT31BS-080
	В	5/4/2022		SHEET 1 OF 1

PARTS LIST				
MBER	DESCRIPTION			
\sim	HUB, GEAR			
)1(D)	SHAFT, WHEEL, TRACTION			
	BEARING, ROLLER, SPHERICAL			
	BEARING, ROLLER, SPHERICAL			
	ECCENTRIC, TRACTION WHEEL SIDE			
	NUT, LOCK, SHAFT			
	WASHER, LOCK, SHAFT			
	KEY, SHAFT, WHEEL			
	RETAINING RING, SPIRAL, MED DUTY			
	OIL, GEAR (1 qt.)			
	GREASE SEAL - SPLIT			
	MANUAL, RETROFIT (NOT SHOWN)			
TE	CRATE (NOT SHOWN)			
	KIT, SHIM AND SEAL			
)5	SHIM, STAND, OUTBOARD			
10	SHIM, STAND, OUTBOARD			
31	SHIM, STAND, OUTBOARD			
	BOLT, BODY, GEAR			
	SHIM, ECCENTRIC, EDGE BONDED			
	O-RING, ECCENTRIC			
	KIT, HARDWARE			
	TUBE, SILICONE			
	THREAD LOCKER, 243			
C X 0.7	5" SCREW, SET, HEX, CONE POINT			
С	NUT, HEX, SERRATED FLANGE,			
	GRADE 5, ZINC-PLATED			
	LABEL, WARNING			
	WEIGHT: 359.1 lbmass			
HOLLISTER-WHITNEY				
ELEVATOR CO. LLC				
ELEVATOR CO. LLC				
KIT, RETROFIT, GT31 BS/OD				
SCALE M	ATERIAL REFERENCE TOL.			
	ALL DIMENSIONS REFERENCE			

1:5	N/A	REFERENCE IOL. ALL DIMENSIONS REFERENCE UNLESS OTHERWISE SPECIFIED
BIZE	date	GT31BS-500-KT
B	9/16/2023	SHEET 1 OF 1

			PARTS LIST		
ITEM	QTY	PART NUMBER	DESCRIPTION		
		GT31-027	GEAR, 7/8" PITCH, SINGLE LEAD		
1	1	GT31-028	GEAR, 7/8" PITCH, DOUBLE LEAD		
		GT31-029	GEAR, 7/8" PITCH, TRIPLE LEAD		
2	2	GT31-062-05	SHIM, STAND, OUTBOARD, 0.0050" THK		
3	4	GT31-062-10	SHIM, STAND, OUTBOARD, 0.0100" THK		
4	2	GT31-062-31	SHIM, STAND, OUTBOARD, 0.0310" THK		
5	6	GT31-072	BOLT, BODY, GEAR		
6	7	GT31-087	SHIM, CAP, BEARING		
7	1	GT31-287	SEAL, SHAFT, RADIAL		
8	1	GT31-287-1	SEAL, SHAFT, RADIAL		
		GT31-294-01	ASSY, WORM SHAFT AND BEARING, 7/8" SINGLE		
9	1	GT31-294-02	ASSY, WORM SHAFT AND BEARING, 7/8" DOUBLE		
		GT31-294-03	ASSY, WORM SHAFT AND BEARING, 7/8" TRIPLE		
10	4	GT31-295	SHIM, ECCENTRIC, EDGE BONDED		
11	1	GT31-301	KEY, SHAFT, WORM		
12	2	GT31-305	O-RING, ECCENTRIC		
13	1	GT31-310	NUT, LOCK, SHAFT		
14	1	GT31-311	WASHER, LOCK, SHAFT		
15	6	3/4"-10 UNC	NUT, HEX, SERRATED FLANGE, GRADE 5, ZINC-PLATED		
16	0.75 OZ.	80038	PRUSSIAN BLUE		
17	3 gal	MOBIL SHC-636	OIL, GEAR, HIGH PRESSURE		
18	10 OZ.	SILICONE	CLEAR RTV SILICONE SEALANT - WL099110C		
			WEIGHT: 134 lbmass		
			HOLLISTER-WHITNEY		
			ELEVATOR CO. LLC		
		A	PRODUCTION RELEASE, DRO PUR #1432 01/13/21 WORM & GEAR REPLACEMENT SET		
HOLLISTE	THIS DRAWING IS SUPPLIED AS A REPRESENTATION OF THE EQUIPMENT HOLLISTER-WHITNEY ELEVATOR CO. LLC ("MANUFACTURER") HAS AGREED TO SUPPLY, SUICH AD ULSTMENTS MAY OCCULP DURING MANUFACTURING AND				
INST	ALLATION. ANY MOD	ITS MAY OCCUR DURING MANUFACTURIN IFICATIONS NOT APPROVED IN WRITING E ECT OPERATION, VOIDS ANY WARRANTY A	SEE PART LIST		
THIS DOC	RELEASES MAI	NUFACTURER OF ALL LIABILITY. ONFIDENTIAL AND PROPRIETARY INFORM	ATION SHEET SIZE DATE GT.31-WG		
THAT CANN		D OR DIVULGED, IN WHOLE OR IN PART, W ZATION FROM THE MANUFACTURER.	A 1/5/2021 SHEET 1 OF 1		

English:

(Original version) **User's Manual** For UL compliance:

ACAUTION

Sensitive products.
The device could be damaged or be destroyed.
Do not use a hammer for adjusting the device.

ACAUTION

Electrostatic sensitive devices. The device could be damaged or be destroyed.

Observe precautions for handling.

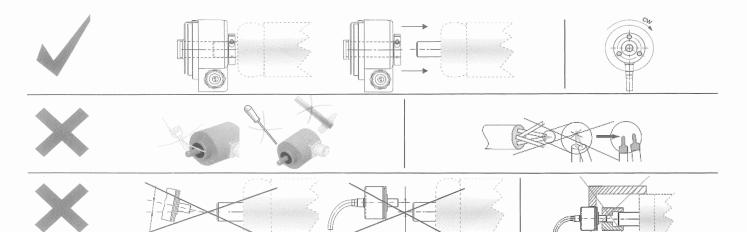
Français:

(La version anglaise constitue la version originale.)

Instructions d'utilisation

Pour le respect de la conformité UL:

ATTENTION



Produits fragiles.
Risque de dommages ou de destruction de l'appareil.
Ne pas utiliser de marteau pour le régler.

ATTENTION

Appareil sensible aux décharges électrostatiques.
 Risque de dommages ou de destruction de l'appareil.
 Prendre les précautions nécessaires pour la manipulation.

Technical data:

- This device is intended for determine absolute or differential rotation positions. It is also possible to measure rotation speeds.
- Altitude up to 2000 m [2187.2 yds].
 Overvoltage category I.
- Electrical power input: minimum 5 V DC maximum 30 V DC ---- as marked, depends on type, fluctuations not exceed ±10% of nominal voltage, class 2.

Please see datasheet on **www.kuebler.com** or labels on the product for details.

- Signal inputs and outputs: class 2.
- Max relative humidity 93% at 40°C [104°F].
- Pollution degree 2.
- No ventillation required.
- Indoor use, outdoor use possible, not intended for direct exposure to UV-radiation.
- Temperature range minimum -20°C [-4°F] up to +70°C [158°F] (depends on type). Range could be extended.
- Please see datasheet on www.kuebler.com for details.
- Cleaning only with water.
- Electrical connections and ratings: see labels on product or in the datasheets on www.kuebler.com.
- Valid accessories you can find in catalogue on www.kuebler.com.
- This device is maintenance-free and need no consumable material.

Données techniques:

- Cet appareil est destiné à la détermination de positions en rotation absolues ou différentielles. Il permet également la mesure de vitesses de rotation.
- Altitude jusqu'à 2000 m [2187.2 yds].
- Catégorie de surtension I.
- Alimentation électrique : minimum 5 V DC maximum 30 V DC ---- selon indication, en fonction du type, fluctuations maximales ±10% de la tension nominale, classe 2.

Se reporter à la fiche technique à l'adresse Internet **www.kuebler.com** ou aux étiquettes du produit pour des détails.

- Entrées et sorties de signal : classe 2.
- Humidité relative max. 93% à 40°C [104°F].
- Degré de pollution 2.
- Ne nécessite aucune ventilation.
- Pour utilisation à l'intérieur, utilisation à l'extérieur possible, n'est pas prévu pour une exposition directe au rayonnement UV.
- Plage de températures minimale -20°C [-4°F] à +70°C [158°F] (selon le type). Cette plage pourrait s'élargir.

Se reporter à la fiche technique à l'adresse Internet **www.kuebler.com** pour des détails.

- Nettoyage à l'eau uniquement.
- Raccordements et valeurs électriques: voir les étiquettes apposées sur le produit ou les fiches techniques à l'adresse Internet www.kuebler.com.
- Vous trouverez les accessoires pour cet appareil dans notre catalogue l'adresse Internet **www.kuebler.com**.
- Cet appareil est sans maintenance et ne nécessite aucun consommable.

Kübler Group • Fritz Kübler GmbH • Schubertstr. 47 • D-78054 Villingen-Schwenningen • Phone: +49 7720 3903-0 • info@kuebler.com • www.kuebler.com Service & Support: www.kuebler.com/usa/service-support.html • mail to: servicecenter@kuebler.com

Installationsanleitung Drehgeber

Wichtig!

Vor Inbetriebnahme des Gebers unbedingt lesen.

Mit diesem Geber haben Sie ein Präzisionsmessgerät erworben. Beachten Sie stets die Angaben und Hinweise des Datenblattes, um eine problemlose Funktion des Gebers zu gewährleisten und um die Garantieleistung aufrecht zu erhalten. Falls im Datenblatt nichts anderes angegeben ist, bitte folgendes unbedingt beachten:

Mechanisch:

English

Installing instructions for rotary encoders

Important!

It is imperative to read these instructions before setting the encoder in operation.

This encoder is a precision measuring instrument.

Always observe the information and instructions of the data sheet to ensure trouble-free function and to maintain warranty claims. Unless otherwise stated in the data sheet, the following has to be absolutely observed:

Mechanical:

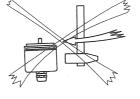
- Der Drehgeber darf weder teilweise noch ganz zerlegt oder modifiziert werden.
- Die Welle nicht nachträglich bearbeiten (schleifen, sägen, bohren, usw.). Die Genauigkeit des Gebers und die Zuverlässigkeit von Lager und Dichtung nehmen sonst Schaden. Wir sind gerne bereit, auf Ihre Kundenwünsche einzugehen.
- Das Gerät niemals mit dem Hammer ausrichten.
- Schlagbelastungen unbedingt vermeiden.
- Drehgeberwelle nicht über die im Datenblatt angegebenen Werte belasten (weder axial noch radial).
- Drehgeber und Antriebsgerät nicht an Wellen und Flanschen starr miteinander verbinden. Benutzen Sie grundsätzlich eine Kupplung (zwischen Antriebswelle und Geberwelle, bzw. zwischen Hohlwellen-Geber-Flansch und Antriebsflansch).

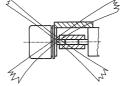
Für die Gebermontage empfehlen wir Ihnen den Einsatz unserer Montagehilfen und Kupplungen (siehe Zubehör-Datenblätter).

We recommend that you use our assembly aids and couplings to install the encoder (see accessory data sheets).

Bitte beachten Sie die umseitig stehenden Montagehinweise!

Please observe the installation instructions on the back page, too.


Do not alter the shaft (by grinding, sawing, drilling, etc.), otherwise the accuracy of the encoder and the dependability of bearing and gasket will suffer. We are prepared to discuss special designs.


It is not permissible to dismantle the encoder

entirely or in part or to modify it.

- Never align the instrument with a hammer.
- It is imperative to avoid impact loads.
- Radial and axial load capacity as stated in the data sheet have to be observed under anv circumstances.
- Do not connect encoder and drive rigidly to one another at shafts and flanges. Always use a coupling (between drive shaft and encoder shaft, or between hollow-shaft encoder flange and drive flange).

Page 105

Montagehinweis für Geber mit Welle:

2

(4)

schützen.

(i) Check shafts for offset. \$

Winkelfehler/Angle error

Refer to the coupling data sheet for the values X1, X2, and X3.

Installation instructions for encoders

- During assembly, protect coupling against excessive bending or damage. 0
- ã Align coupling on the shafts.
- ã Carefully tighten pulling or clamping bolts.

Installation instructions for hollow-shaft encoders with coupling:

Kupplung auf den Wellen ausrichten.

Spann- oder Klemmschrauben vorsichtig anziehen. Montagehinweise für Hohlwellengeber

Geber mit Kupplung auf Welle montieren

mit Kupplung:

Mount encoder with coupling on shaft

Entnehmen Sie die Werte X1, X2 und X3 dem Datenblatt der Kupplung

Kupplung während der Montage vor zu starker Biegung sowie Beschädigung

Kuppluna mit Antriebflansch verschrauben

Elektrisch:

1 Geltende Sicherheitsnormen

- Vor Inbetriebnahme sind alle benötigten Kabeladern laut Datenblatt anzuschließen! Isolieren Sie alle nicht benötigten Enden sauber, um Kurzschlüsse zu vermeiden
- Bei der Konfektionierung des Gegensteckers ist eine, evtl. dem Stecker beigelegte, Anleitung zu beachten
- An Leistungslängen empfehlen wir
- bei asymmetrischer Übertragung, d.h. invertierte Signale werden nicht verwendet, max. 10 m Leitungslänge
- bei symmetrischer Übertragung (z.B. nach RS 422) max. 50 m Leitungslänge (Leitungslänge mit verdrillten Aderpaaren)
- Gegenstecken am Geber nur im spannungslosen Zustand ziehen oder stecken
- Die richtige Betriebsspannung und den maximal zulässigen Ausgangsstrom berücksichtigen (siebe Datenblatt)!
- Ein- bzw. Ausschalten der Betriebsspannung für den Geber und das Folgegerät muss gemeinsam erfolgen.
- 2. Um CE-Konformität zu erreichen, ist eine EMV-gerechte Installation Voraussetzuna:
- Als Steuerleitungen sind durchgehend geschirmte Kabel zu verwenden. Bei symmetrischer Übertragung (z.B. RS 422) muss ein Kabel mit verdrillten Aderpaaren verwendet werden.
- Der Kabelschirm wird idealerweise rundum (360°) über schirmbare Stecker oder kabeldurchführungen an den Geber und die Auswertung angelegt.
- Die Schutzerde (PE) ist bevorzugt beidseitig, am Geber und an der Auswertung, impedanzarm aufzulegen.
- Bei Problemen durch Erdschleifen ist die Schutzerde (PE) auf der Geberseite aufzutrennen. Der Geber sollte hierhei gegenüber dem Antrieb elektrisch isoliert angebaut werden.
- Die Geberleitungen sind getrennt von Leitungen mit hohem Störpegel zu verlegen.
- An der Spannungsversorgung des Gebers sollten keine Verbraucher mit hohem Störpegel, wie z.B. Frequenzumrichter, Magnetventile, Schütze etc. angeschlossen werden. Andernfalls ist für eine geeignete Spannungsfilterung zu sorgen.

Sicherheitshinweise:

- 1. Wenn anzunehmen ist, dass ein gefahrloser Betrieb nicht mehr gewährleistet ist, muss das Gerät außer Betrieb gesetzt und gegen unbeabsichtigtes Einschalten gesichert werden.
- 2. Wenn durch den Ausfall oder eine Fehlfunktion des Gebers eine Gefährdung von Menschen oder eine Beschädigung von Betriebseinrichtungen nicht auszuschließen ist, so muss dies durch geeignete Sicherheitsmaßnahmen wie Schutzvorrichtungen oder Endschalter usw. verhindert werden.

Bei Missachtung der obigen Richtlinien können wir keine Garantie gewähren. Wir bitten um Verständnis.

Bolt coupling to drive flange.

Carefully tighten clamping hub

Page 106

Electrical:

1. The existing safety devices for electrical installations have to be observed.

hen

Klemmnabe

vorsichtig anzie-

- Before setting in operation, connect all required strands as per data sheet. To prevent short-circuits, neatly insulate the ends of all strands which are not required
- When preassembling the mating connector, comply with any instructions accompanying the connector.
- Our recommendations regarding cable lengths:
- · in case of asymmetrical transmission, i.e. inverted signals are not used, cable length max. 10 m. in case of symmetrical transmission (e.g. to RS 422), cable length max. 50 m
- (cable with twisted pairs of wires).
- Plug in or pull out mating connector at the encoder only when encoder is de-energized.
- Make certain that the operating voltage is correct and the max. permissible output current is not exceeded (see data sheet).
- The operating voltage for encoder and succeeding device must be turned on and off together.
- 2. In order to obtain CE-Conformity, EMC installation conformity should be observed.
 - Shielded cables should be used or control lines
 - In case of symmetrical transmission (e.g. Rh 422) a cable with twisted pairs of wire has to be used.
 - The cable shield should it possible be connected fully enclosed (360°) by shielded connectors or cable bushings. This has to be done at the encoder and transmision end.
- The protection earth should be put with low impedance on both face and back of the encoder and the transmission end.
- In case of earth loop problems, the protection earth of the encoder side has to be removed. On this occasion, the encoder should be placed electrically isolated opposite the actuation.
- The encoder lines should run separately to cables with high noise levels.
- Consumer with high disturbance level, e.g. frequency converters, solenoid valves, contactors etc. should not be connected to the same voltage supply. Otherwise, a suitable voltage filtering has to be installed.

Safety precautions:

- 1. If operation without danger can no longer be assured of some point, the unit must be shut down and secured against accidental activation
- 2. If personal injury or damage to equipment is possible should the encoder fail or malfunction, this must be prevented by suitable safety precautions such as protective devices or limit switches, etc.

We can assume no warranty it the above directives are disregarded. We ask for your understanding.

English

with shaft:

Baldor-Reliance® AC & DC Motor Installation & Maintenance

Note! The manufacturer of these products, Baldor Electric Company, became ABB Motors and Mechanical Inc. on March 1, 2018. Nameplates, Declaration of Conformity and other collateral material may contain the company name of Baldor Electric Company and the brand names of Baldor-Dodge and Baldor-Reliance until such time as all materials have been updated to reflect our new corporate identity.

Safety Notice: Be sure to read and understand all of the Safety Notice statements in MN408, MN605 or Product Specific manual for your motor. A copy is available at: http://www.baldor.com/support/product_manuals.asp

WEEE EU Directive 2012/19/EU

Products that are marked with the crossed-out wheeled bin symbol as shown here; shall be handled by applying following information:

The crossed-out wheeled bin symbol on the product(s) and / or accompanying documents means that used electrical and electronic equipment (WEEE) should not be mixed with general household waste. For users in the European Union, please contact your dealer or supplier for more information on how to discard electrical and electronic equipment

(EEE).

ACCEPTANCE

Thoroughly inspect this equipment before accepting shipment from the transportation company. If any damage or shortage is discovered do not accept until noted on the freight bill. Report all damage to the freight carrier.

SAFETY

Eye bolts, lifting lugs or lifting openings, if provided, are intended only for lifting the motor and motor mounted standard accessories not exceeding, in total 30% of the motor weight. These lifting provisions should never be used when lifting or handling the motor and driven equipment. Eye bolt lifting capacity rating is based on a lifting alignment coincident with eye bolt center line. Eye bolt capacity reduces as deviation from this alignment is increased. Be sure eye bolts are tight and prevented from turning before lifting.

INSTALLATION OUTSIDE THE USA:

Refer to MN408, MN605 and MN1383 for Compliance with European Directives. Copies are available at: http://www.baldor.com/support/product_manuals.asp

MOTOR ENCLOSURE

ODP, Open drip proof motors are intended for use in clean, dry locations with adequate supply of cooling air. These motors should not be used in the presence of flammable or combustible materials. Open motors can emit flame and/or molten metal in the event of insulation failure.

Standard Totally Enclosed motors provide additional protection from moisture and dust compared to Open motors. Severe Duty and Washdown Duty motors provide additional protection compared to Standard Totally Enclosed motors. Explosion protected motors, as indicated by a Nationally Recognized Testing Laboratory Certification mark and marking with Class, Division and Temperature Code are intended for installation in hazardous locations as described in Article 500 of the NEC. Refer to MN408 for more details.

MOUNTING

Foot mounted machines should be mounted to a rigid foundation to prevent excessive vibration. Shims may be used if location is uneven. Flange mounted machines should be properly seated and aligned. Note: If improper rotation direction is detrimental to the load, check rotation direction prior to coupling the load to the motor shaft.

For V-belt drive, mount the sheave pulley close to the motor housing. Allow clearance for end to end movement of the motor shaft. Do not overtighten belts as this may cause premature bearing failure or shaft breakage. **Direct coupled** machines should be carefully aligned and the

shaft should rotate freely without binding.

GENERAL

The user must select a motor starter and overcurrent protection suitable for this motor and its application. Consult motor starter application data as well as the National Electric Code and/or applicable local codes. Special motors for use by United States Government including special specifications, master plans, etc. refer to the applicable master plans and specifications involved.

On motors received from the factory with the shaft blocked, remove blocking before operating the motor. If motor is to be reshipped alone or installed to another piece of equipment, the shaft block must be installed to prevent axial movement and prevent brinelling of the bearings during shipment.

TESTING

If the motor has been in storage for an extensive period or has been subjected to adverse moisture conditions, check the motor insulation resistance with a meg ohm meter. Depending on storage conditions it may be necessary to regrease or change rusted bearings. Contact your local sales office if resistance is less than 5 meg ohms.

WARNING: Do not touch electrical connections before you first ensure that power has been disconnected. Electrical shock can cause serious or fatal injury.

WARNING: Be sure the system is properly grounded before applying power. Electrical shock can cause serious or fatal injury.

INSTALLATION

This motor must be installed in accordance with National Electric Code, NEMA MG-2, IEC standards or local codes.

WIRING

Connect the motor as shown in the connection diagrams. If this motor is installed as part of a motor control drive system, connect and protect the motor according to the control manufacturers diagrams. Refer to MN408 or MN605 for additional details on lead marking. The wiring, fusing and grounding must comply with the National Electrical Code or IEC and local codes. When the motor is connected to the load for proper direction of rotation and started, it should start quickly and run smoothly. If not, stop the motor immediately and determine the cause. Possible causes are: low voltage at the motor, motor connections are not correct or the load is too heavy. Check the motor current after a few minutes of operation and compare the measured current with the nameplate rating.

GROUNDING

Ground the motor according to NEC and local codes. In the USA consult the National Electrical Code, Article 430 for information on grounding of motors and generators, and Article 250 for general information on grounding. In making the ground connection, the installer should make certain that there is a solid and permanent metallic connection between the ground point, the motor or generator terminal housing, and the motor or generator frame. In non-USA locations consult the appropriate national or local code applicable.

ADJUSTMENT

The neutral is adjustable on some DC motors. AC motors have no adjustable parts.

Noise

For specific sound power or pressure level information, contact your local sales office.

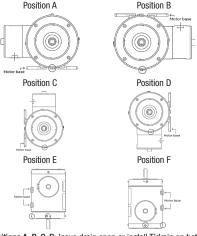
VIBRATION

This motor is balanced to NEMA MG1, Part 7 standard.

BRUSHES (DC Motors)

Periodically, the brushes should be inspected and all brush dust blown out of the motor. If a brush is worn 1/2, (length specified in renewal parts data), replace the brushes.

WARNING: Guards must be insalled for rotating parts such as couplings, pulleys, external fans, and unused shaft extensions, should be permanently guareded to prevent accidental contact by personnel. Accidental contact with body parts or clothing can cause serious or fatal injury.


Reassemble and seat the new brushes using a brush seating stone. Be sure the rocker arm is set on the neutral mark.

INSPECTION

Before connecting the motor to an electrical supply, inspect for any damage resulting from shipment. Turn the shaft by hand to ensure free rotation. Motor leads must be isolated before the shaft will turn freely on permanent magnet motors.

DRAIN PLUGS

One or more condensation drain plugs are provided on each end plate for various motor types and mounting positions. If your motor is equipped with multiple condensation drain holes in each end plate. Please use this chart for proper orientation of plugs and/or T'drains. Failure to follow these instructions will void the warranty.

Positions A, B, C, D: leave drain open or install T'drain on both ends of the motor at circuled locations. Plug all other drain holes. Positions E, F: leave drain open or install T'drain at circled locations. Plug all other drain holes.

MOUNTING

Mount the motor on a foundation sufficiently rigid to prevent excessive vibration. Grease lubricated ball bearing motors may be mounted with the feet at any angle. After careful alignment, bolt motor securely in place. Use shim to fill any unevenness in the foundation. Motor feet should sit solidly on the foundation before mounting bolts are tightened.

IP (Ingress Protection)

IP designations include two numerals, the first characteristic numeral is for ingress solid bodies and from dust. The second for ingress protection from liquid - water. The IP rating assigned to a motor is based on horizontal mounting unless the motor is specifically designed for vertical positioning. Mounting the horizontal rated motor in a non-horizontal position may require additional protection, contact the local ABB District Office to review the mounting requirements and ingress protection. Open motors (IPX2 and IPX3) must be located, oriented, or additionally protected in the application to prevent falling water from entering the motor.

GUARDING

After motor installation is complete, a guard of suitable dimensions must be constructed and installed around the motor/gearmotor. This guard must prevent personnel from coming in contact with any moving parts of the motor or drive assembly but must allow sufficient cooling air to pass over the motor. If a motor mounted brake is installed, provide proper safeguards for personnel in case of brake failure. Brush inspection plates and electrical connection cover plates or lids, must be installed before operating the motor.

STARTING

Before starting motor remove all unused shaft keys and loose rotating parts to prevent them from flying off. Check direction of rotation before coupling motor to load. The motor should start quickly and run smoothly and with little noise. If the motor should fail to start the load may be too great for the motor, the voltage is low or the motor has been miswired. In any case immediately shut motor off and investigate the cause.

ROTATION

To reverse the direction of rotation, disconnect and lockout power and interchange any two of the three AC power leads for three phase motors. For two-phase four wire, disconnect and lockout power and interchange the AC line leads on any one phase. For two phase three wire, disconnect and lockout power and interchange phase one and phase two AC line leads.

MAINTENANCE PROCEDURES

- WARNING: Do not touch electrical connections before you first ensure that power has been disconnected. Electrical shock can cause serious or fatal injury.
- WARNING: Surface temperatures of motor enclosures may reach temperatures which can cause discomfort or injury to personnel accidentally coming in contact with hot surfaces. Protection should be provided by the user to protect against accidental contact with hot surfaces. Failure to observe this precaution could result in bodily injury.

Lubrication Information

Refer to motor nameplate for recommended lubricant. If none is shown, the recommended lubricant for anti-friction bearings ($15^{\circ}F$ to $120^{\circ}F$ (- $9^{\circ}C$ to $49^{\circ}C$) is POLYREX EM. For Min Start Temp - $100^{\circ}F$ ($38^{\circ}C$) use AEROSHELL #7. For roller bearings is ExxonMobil SHC-220.

Relubrication Intervals

(For motors with regrease capability) New motors that have been stored for a year or more should be relubricated. Lubrication is also recommended at Table 1 intervals.

MN416

LUBRICATION INSTRUCTIONS

Cleanliness is important in lubrication. Any grease used to lubricate anti friction bearings should be fresh and free from contamination. Properly clean the grease inlet area of the motor to prevent grease contamination.

- 1. Select service conditions (Table 2).
- 2. Select lubrication interval (Table 1).
- 3. Adjust lubrication interval with multiplier (Table 3).
- Δ Select volume of grease (Table 4).

LUBRICATION PROCEDURE

Bearings should be lubricated while stationary and the motor is warm.

- 1. Locate the grease inlet, clean the area, and replace the pipe plug with a grease fitting.
- 2 Locate and remove the grease drain plug, if provided.
- 3. Add the recommended volume of the recommended grease.
- Replace the grease inlet plug and run the motor for 15 4. minutes.
- 5. Replace the grease drain plug.

SPECIAL APPLICATIONS

For special temperature applications, contact your local sales office.

Relubrication Intervals

Recommended relubrication intervals are shown in Table 1. It is important to realize that the recommended intervals of Table 2 are based on average use. Refer to additional information contained in Tables 2, 3 and 4.

Table 1 Relubrication Interval

NEMA (IEC) Frame Size	Rated Speed (F	Rated Speed (RPM)		
	3600	1800	1200	900
Up to 210 incl. (132)	5500Hrs.	12000Hrs.	18000Hrs.	22000Hrs.
Over 210 to 280 incl. (180)	3600Hrs.	9500Hrs.	15000Hrs.	18000Hrs.
Over 280 to 360 incl. (225)	2200Hrs.	7400Hrs.	12000Hrs.	15000Hrs.
Over 360 to 5800 incl. (400)	2200Hrs.	3500Hrs.	7400Hrs.	10500Hrs.

Relubrication intervals are for ball bearings.

For vertically mounted motors and roller bearings, divide the relubrication interval by 2.

For motors operating at speeds greater than 3600 RPM, contact your local sales office for relubrication recommendations.

Severity of Service	Hours per day of Operation	Ambient Temperature Maximum °F (°C)	Atmospheric Contamination
Standard	8	104°F (40°C)	Clean, Little Corrosion
Severe	16 Plus	122°F (50°C)	Moderate dirt, Corrosion
Extreme	16 Plus	>122°F (50°C)* or Class H Insulation	Severe dirt, Abrasive dust, Corrosion, Heavy Shock or Vibration
Low Temperature		<-20°F (-29°C)**	

Table 2 Service Conditions

Special high temperature grease is recommended (Dow Corning DC44).

** Special low temperature grease is recommended (AEROSHELL 7).

Note: Different grease types are generally incompatible and should not be mixed. Mixing different types can cause lubricant and bearing failure. Thoroughly clean bearing and cavity before changing grease type.

Table 3 Lubrication Interval Multiplier

Severity of Service	Multiplier	
Standard	1.0	
Severe	0.5	
Extreme	0.1	
Low Temperature	1.0	

Some motor designs use different bearings on each motor end. This is normally indicated on the motor nameplate. In this case, the larger bearing is installed on the motor drive endplate. For best relubrication results, only use the appropriate amount of grease for

Table 4	Amount	of	Grease	to	Add

Bearing Description (These are the "Large" bearings (Shaft End) in each frame size)				each frame size)	
Frame Size NEMA (IEC)	Pooring			Volume of grease to be added	
NEWIA (IEG)	Bearing	Weight of Grease to add in Ounces (Grams)	in ³	teaspoon	
56 to 140 (90)	6203	0.08 (2.4)	0.15	0.5	
140 (90)	6205	0.15 (3.9)	0.2	0.8	
180 (100-112)	6206	0.19 (5.0)	0.3	1.0	
210 (132)	6307	0.30 (8.4)	0.6	2.0	
250 (160)	6309	0.47 (12.5)	0.7	2.5	
280 (180)	6311	0.61 (17)	1.2	3.9	
320 (200)	6312	0.76 (20.1)	1.2	4.0	
360 (225)	6313	0.81 (23)	1.5	5.2	
400 (250)	6316	1.25 (33)	2.0	6.6	
440 (280)	6318	1.52(40)	2.5	8.2	
440 (280)	6319	2.12 (60)	4.1	13.4	
5000 to 5800 (315-400)	6328	4.70 (130)	9.2	30.0	
5000 to 5800 (315-400)	NU328	4.70 (130)	9.2	30.0	
360 to 449 (225-280)	NU319	2.12 (60)	4.1	13.4	
AC Induction Servo					
76 Frame 180 (112)	6207	0.22 (6.1)	0.44	1.4	
77 Frame 210 (132)	6210	0.32 (9.0)	0.64	2.1	
80 Frame 250(160)	6213	0.49 (14.0)	0.99	3.3	

Typical IEC vs NEMA Lead Marking

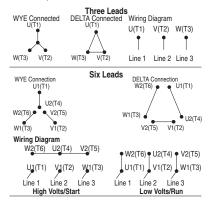
	e connection diag U1(T1) • U2(T4) •	gram provided on the motor.
Single Pha	se Reversible	
Main Winding	U1(T1) ● U2(T4) ●	Z1(T8) Z2(T5) Auxiliary Winding
Dual Volta	ge Reversible	
Main Winding	U1(T1) U2(T2) U3(T3) U4(T4)	Z1(T8)Z2(T5) Auxiliary Winding

Cinale Dhees New Deversible

DC Motors

Lead markings can be translated between IEC and NEMA designations as follows:

	NEMA	IEC
Armature	A1, A2	A1, A2
Series Field	S1, S2	D1, D2
Shunt Field	F1, F2	E1, E2


Refer to the connection diagram provided on the motor.

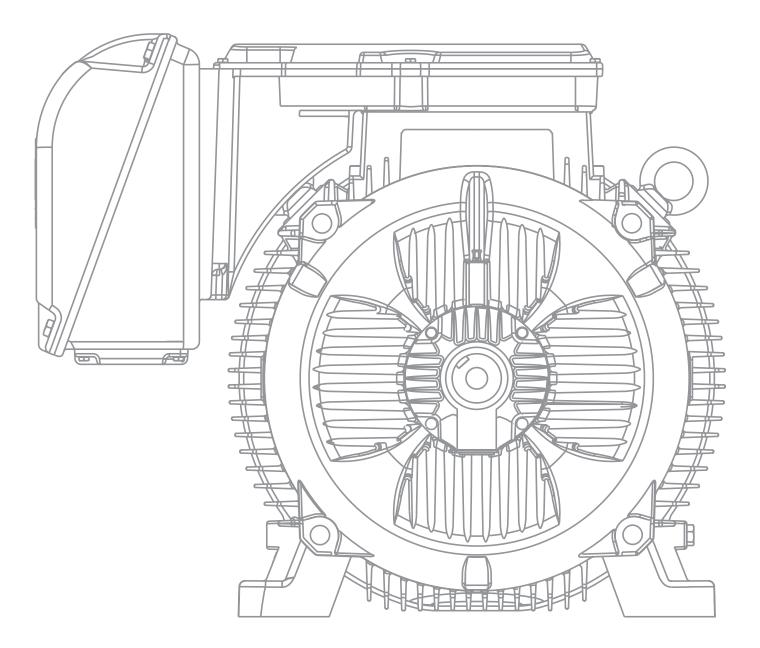
Three Phase

 For single winding 3 phase motors, lead markings can be directly translated between IEC and NEMA designations.

 For these motors, the lead markings are: U1=T1 U2=T4 U3=T7 U4=T10 V1=T2 V2=T5 V3=T8 V4=T11 W1=T3 W2=T6 W3=T9 W4=T12

Refer to the connection diagram provided on the motor. Some examples are as follows:

ABB Motors and Mechanical Inc.


5711 R. S. Boreham Jr. Street Fort Smith, AR 72901 Ph: 1.479.646.4711

baldor.com

SPECIFICATION GUIDE ELECTRIC MOTORS

Specification of Electric Motors

WEG, which began in 1961 as a small factory of electric motors, has become a leading global supplier of electronic products for different segments. The search for excellence has resulted in the diversification of the business, adding to the electric motors products which provide from power generation to more efficient means of use.

This diversification has been a solid foundation for the growth of the company which, for offering more complete solutions, currently serves its customers in a dedicated manner. Even after more than 50 years of history and continued growth, electric motors remain one of WEG's main products. Aligned with the market, WEG develops its portfolio of products always thinking about the special features of each application.

In order to provide the basis for the success of WEG Motors, this simple and objective guide was created to help those who buy, sell and work with such equipment. It brings important information for the operation of various types of motors. Enjoy your reading.

Table of Contents

1.1 Electric Motors	
1.2 Basic Concepts7	
1.2.1 Torque7	
1.2.2 Mechanical Energy & Power7	
1.2.3 Electrical Energy & Power7	
1.2.4 Apparent, Active and Reactive Power	
1.2.5 Power Factor	
1.2.6 Efficiency 11	
1.2.7 Torque Versus Power Ratio 11	
1.3 Single-Phase AC Systems11	
1.3.1 Connection: Parallel and Series11	
1.4.2 Star Connection12	
1.4 Three-Phase AC System 12	
1.4.1 Delta Connection12	
1.5 Three-Phase Induction Motor13	
1.5.1 Working Principle - Rotating Field13	
1.5.2Synchronous Speed (ns)14	
1.5.3Slip (s)	
1.5.4 Rated Speed 15	
1.6 Insulation Materials and Insulation Systems 15	
1.6.1 Insulation Material15	
1.6.2 Insulation System15	
1.6.3 Thermal Classes15	
1.6.4 Insulating Materials in Insulation Systems	
1.6.5WEG Insulation System16	

1. Fundamental Concepts......6

2. Power Supply Characteristics18

2.1	Power Supply System	18
2.1.1	Three-Phase System	18
2.1.2	Single-Phase System	18

3. Characteristics of the Electric Motor Power Supply......18

3.1	Rated Voltage	18
3.1.1	Multiple Rated Voltage	18
3.2	Rated Frequency (Hz)	19
3.2.1	Connection to Different Frequencies	19
3.3	Voltage and Frequency Variation Tolerance2	20
3.4	Three-Phase Motor Starting Current Limitation	20
3.4.1	D.O.L Starting	20
3.4.2	Starting with Star-Delta Switch (Y - Δ)	21
3.4.3	Compensating Switch	23
3.4.4	Comparing Star-Delta Starters and	24
3.4.5	Series-Parallel Starting	24
3.4.6	Electronic Start (Soft-Starter)	25
3.5	Direction of Rotation of Three-Phase	
	Induction Motors	25

4. Acceleration Characteristics......25

4.1 Torque	25
4.1.1 Torque X Speed Curve	
4.1.2 Designs - Minimum Standardized Torque	
4.1.3 Characteristics of WEG Motors	28
4.2 Load Inertia	28
4.3 Acceleration Time	28
4.4 Duty Cycles	29
4.5 Locked Rotor Current	29
4.5.1 Standardized Maximum Values	29

5. Speed Regulation of Asynchronous

Motors	

5.1	Changing the Number of Poles	30
5.1.1	Two Speed Motors with Independent Winding.	30
5.1.2	Dahlander	30
5.1.3	Motors with Two or More Speeds	31
5.2	Slip Variation	31
5.2.1	Rotor Resistance Variation	31
5.2.2	Stator Voltage Variation	31
5.3	Frequency Inverters	31

6.1	Brake Operation	32
	Connection Diagram	
6.3	Brake Coil Power Supply	33
6.4	Brake Torque	33
6.5	Air Gap Adjustment	33

7.1.1 Winding Heating Up	34
7.1.2 Motor Lifetime	35
7.1.3 Insulation Classes	35
7.1.4 Winding Temperature Rise Measurement	35
7.1.5 Electric Motor Application	36
7.2 Thermal Protection of Electric Motors	
7.2.1 Resistance Temperature Detector (Pt-100)	36
7.2.2 Thermistors (PTC and NTC)	36
7.2.3 Bimetal Thermal Protectors - Thermostats	37
7.2.4 Phenolic Thermal Protection System	38
7.3 Service Duty	39
7.3.1 Standardized Service Duties	
7.3.2 Duty Type Designation	42
7.3.3 Rated Output	43
7.3.4 Equivalent Power Ratings for Low Inertia Lo	
7.4 Service Factor (SF)	44

8. Environment Characteristics44

8.1	Altitude	.44
8.2	Ambient Temperature	.44
8.3	Determining Useful Motor Output at Different	
	Temperature and Altitude Conditions	.44
8.4	Environment	.45
8.4.1	Aggressive Environments	.45
8.4.2	2Environments Containing Dust and Fibers	.45
	3Explosive Atmospheres	
8.5	Degree of Protection	.45
8.5.1	Identification Codes	.45
8.5.2	2 Usual Degrees of Protection	.46
8.5.3	3 Weather Protected Motors	.46
	Space Heater	
8.7	Noise Levels	.47

9. Explosive Atmosphere48

9.1	Hazardous Area	48
9.2	Explosive Atmosphere	48
9.3	Classification of Hazardous Areas	48
9.3.1	Classes and Groups of the Hazardous Areas	48
9.3.2	Protection by Enclosure	49
9.4	Temperature Classes	50
9.5	Equipment for Explosive Atmospheres	50
9.6	Increased Safety Equipment	50
9.7	Explosion-Proof Equipment	51

10. Mounting Arrangements......51

10.1	Dimensions5	51
10.2	Standardized Type of Construction and Mountin	ıg
	Arrangement5	52
10.3	Flanges Dimensions5	54
10.4	Painting5	55
	1Tropicalized Painting5	

11. Three-Phase Electric Motor Selection and Application55

 11.1 Motor Type Selection for Different Loads 11.2 W22 Magnet Drive System[®] 11.3 Application of Induction Motors with Variable Frequency Drives 11.3.1Normative Aspects 	.58 .58
11.3.2 Induction Machine Speed Variation by Frequ	
Inverter	
11.3.3 Characteristics of the Frequency Inverter	
11.3.3.1 Control Types	
11.3.3.2 Harmonics	
11.3.4 Inverter Influencing Motor Performance	
12. Environmental Information	.63
12.1 Packaging 12.2 Product	
13. Tests	.63
13.1 Variable Frequency Drive Motors	.63
14. Appendix	.64
14.1 International System of Units14.2 Unit Conversion14.3 Standards	.65

1. Fundamental Concepts

1.1 Electric Motors

The electric motor is a machine capable of converting electrical energy into mechanical energy. The induction motor is the most widely used type of motor because it combines all the advantages offered by the electrical energy such as low cost, easy of supply and distribution, clean handling and simple controls - together with those of simple construction and its great versatility to be adapted to wide ranges of loads and improved efficiencies. The most common types of electric motors are:

a) Direct current motors

These motors are quite expensive requiring a direct current source or a converting device to convert normal alternating current into direct current. They are capable of operating with adjustable speeds over a wide range and are perfectly suited for accurate and flexible speed control. Therefore, their use is restricted to special applications where these requirements compensate the much higher installation and maintenance costs.

b) Alternating current motors

These are the most frequently used motors because electrical power is normally supplied as alternating current. The most common types are:

Synchronous motors: synchronous motors are three-phase AC motors which run at fixed speed, without slip, and are generally applied for large outputs (due to their relatively high costs in smaller frame sizes).

Induction motor: these motors generally run at a constant speed which changes slightly when mechanical loads are applied to the motor shaft. Due to its simplicity, robustness and low cost, this type of motor is the most widely used and, in practical terms, is quite suitable for almost all types of machines. Currently it is possible to control the speed of induction motors by frequency inverters.

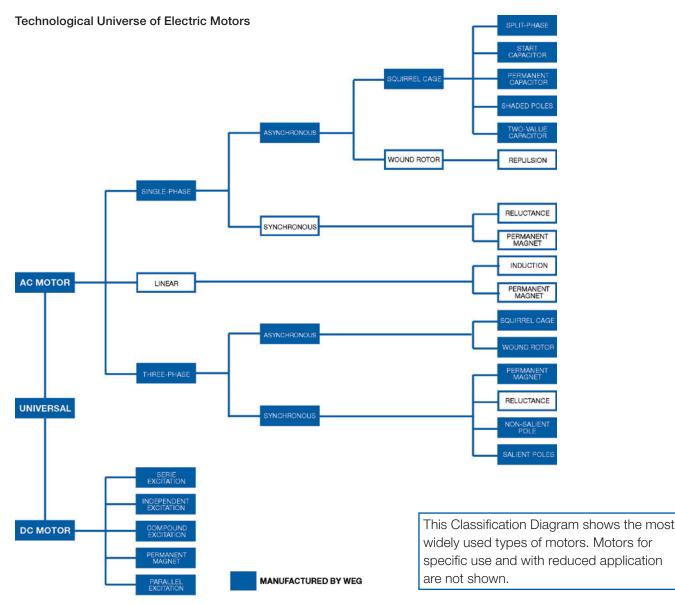


Figure 1.1 - Technological Universe of Electric Motors

1.2 Basic Concepts

For a better understanding of the next sections, the following are described the concepts of some principles of Physics concerning energy and forces.

1.2.1 Torque

Torque, also known as moment of force, is the measure of the energy required to rotate a shaft. Through practical experience, we can note that for lifting a weight similar to the one used in water wells (see figure 1.2). The required force "F" to be applied on the winch depends on the length "E" of the crank handle. The larger the crank handle, the less force is required. By doubling the length "E" of the crank handle, the required force "F" is reduced by half.

Figure 1.2 shows that the bucket weights 20 N while the diameter of the drum is 0.20 m, thus permitting the rope to transmit a force of 20 N on the drum's surface, i.e. at 0.10 m from the axis center. In order to counterbalance this force, 10 N is must be applied on the crank handle if "E" has a length of 0.20 m. If "E" is twice as much, i.e. 0.40 m, force "F" becomes half, or 5 N. As you can see, to measure the "energy" required to make the shaft rotate, it is not sufficient to define the force applied but it is also necessary to indicate at what distance from the shaft center the force is applied. You must also inform at what distance from the shaft center the force is applied. The "energy" is measured by the torque. that is the result of "F" (force) x "E" (distance). F x E. In the given example, the torque is:

C = 20 N x 0.10 m = 10 N x 0.20 m = 5 N x 0.40 m = 2.0 Nm

C = F.E (N.m)

Figure 1.2 - Torque

1.2.2 Mechanical Energy & Power

Power measures the "speed" with which energy is applied or consumed. In the previous example, if the well is 24.5 m deep the work or energy (W) spent to lift the bucket from the bottom of the well up to the wellhead will always be the same: $20 \text{ N} \times 24.6 \text{ m} = 490 \text{ Nm}$

Note: the measuring unit for the mechanical energy, Nm, is the same that is used for torque - however the values are of different nature and therefore should not be confused.

 $W = F \cdot d (N.m)$

OBS.: 1 Nm = 1 J = Power x time = Watts x second

Power expresses how quick the energy is applied, it is calculated by dividing the total energy or work by the time in which it is done. Therefore, by using an electric motor to lift a water bucket in 2.0 seconds, the required Power will be:

$$P_{mec} = \frac{F \cdot d}{t}$$
 (W)
 $P_{1} = \frac{490}{2.0} = 245$ W

If we use a higher power rating motor, able to do this work in 1.3 seconds, the required power will be:

$$P_2 = \frac{490}{1.3} = 377 W$$

The most commonly used unit for measuring the mechanical power is HP (horsepower), equivalent to 0.7457 kW (measuring unit used internationally for the same purpose).

Relationship between power units P (kW) = $0.7457 \cdot P$ (HP) P (HP) = 1.341 P (kW)

In this case the outputs of the above mentioned motors will be:

$$P_{1} = \frac{245}{745} = \frac{1}{3} HP \qquad P_{2} = \frac{377}{745} = \frac{1}{4} HP$$

For circular movements

$$C = F \cdot r \quad (N.m)$$

$$v = \frac{\pi \cdot d \cdot n}{60} \quad (m/s)$$

$$P = \frac{F \cdot d}{100} \quad (HP)$$

$$P_{\text{mec}} = \frac{1}{745 \cdot t}$$
 (HP)

Where: C = torque (Nm) F = force (N) r = pulley radius (m) v = angular speed (m/s) d = part diameter (m)n = speed (rpm)

1.2.3 Electrical Energy & Power

Although energy is always one and the same thing, it can be presented in several forms. By connecting a resistance to a voltage supply, an electric current will flow through the resistance that will be heated. The resistance absorbs energy, transforming it into heat which is also a form of energy. An electric motor absorbs electric energy from the power supply, transforming it into mechanical energy available at the end of the shaft.

DC Circuits

The "electric power" on DC circuits can be obtained by the ratio among voltage (U), current (I) and resistance (R) involved in such circuit, that is:

 $P = U \cdot I \quad (W)$ or $P = \frac{U^2}{R} \quad (W)$

 $P = R \cdot l^2 \quad (W)$

O

Where: U = voltage(V) I = current(Amps) $R = resistance(\Omega)$ P = average Power(W)

AC Circuits

a) Resistance

In the case of "resistances", the higher the supply voltage, the higher the current that results in faster heating of the resistance. This means that the electric power will be higher. The electric energy absorbed from the line, in case of resistance, is calculated by multiplying the line voltage by the current if the resistance (load) is single-phase.

 $\mathsf{P} = \mathsf{U}_{\mathsf{f}} \cdot \mathsf{I}_{\mathsf{f}} \quad (\mathsf{W})$

In a three-phase system, the power in each phase of the load is $P_f = U_f \times I_f$ as it were an independent single-phase system. The total power is the sum of the power of the three-phases, i.e.:

 $P = 3P_{f} = 3 . U_{f} . I_{f}$

Considering that the three-phase system can be delta or star connected, we will have the following relations:

Star-connection: $U = \sqrt{3} U_f e I = I_f$

Delta-connection: $U = U_f$ e $I = \sqrt{3} I_f$

Thus, the total power for both connections will:

 $P = \sqrt{3} . U . I (W)$

Note: this formula applies to resistive loads only, i.e. where there is no phase shift of the current.

b) Reactive loads

For "reactive" loads, i.e. where there is phase shifting in the case of induction motors, the phase shift must be taken into account and the formula then becomes.

$$P = \sqrt{3} . U . I . \cos \varphi (W)$$

Where: U = Line voltage I = Line current $\cos \varphi = Phase shift angle between voltage and current.$ Electric power is normally measured in watts (W) corresponding to 1 volt x 1 ampere or its multiple kilowatts (kW) = 1000 watts. This unit may also be used to measure the output of mechanical power. Electric energy is normally measured by the kilowatt-hour (kWh) corresponding to the energy supplied by a power of 1 kW over a period of 1 hour (this is the unit appearing on electricity bills).

1.2.4 Apparent, Active and Reactive Power Apparent power (S)

It is the multiplication result of the voltage by the current (S = U. I for single-phase systems and S = $\sqrt{3}$. U. I, for three-phase systems. This corresponds to the effective power which exists when there is no phase displacement of the current, i. e. for the resistive loads. Then,

$$S = \frac{P}{\cos \phi} (VA)$$

Evidently, for resistive loads, $\cos \phi = 1$, and the effective power can then be interpreted as apparent power. The measuring unit for apparent power is volt-ampere (VA) or its multiple, kilovolt-ampere (kVA).

Active power (P)

It is the portion of apparent power that performs work, that is, the portion that is converted into energy.

$$P = \sqrt{3}$$
 . U.I. $\cos \varphi$ (W) or $P = S \cdot \cos \varphi$ (W)

Reactive power (Q)

It is the portion of apparent power that does "not" perform work. It is only transferred and stored on passive elements (capacitors and inductors) of the circuit.

$$\mathsf{Q}\,=\sqrt{\,\mathsf{3}^{\,\mathsf{T}}}\,$$
 . U. I sen $\phi\,$ (VAr) $\,$ or $\,$ $\mathsf{Q}\,=\,\mathsf{S}$. sen $\phi\,$ (VAr)

Power triangle

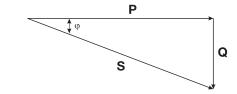


Figure 1.3 - Power Triangle (inductive load)

1.2.5 Power Factor

The power factor is indicated by $\cos \varphi$, where φ is the angle of voltage displacement relating to the current. It is the relationship between active (P) and the apparent power (S) (Figure 1.3).

$$\cos \varphi = \frac{P}{S} = \frac{P(kW).1000}{3.U.I}$$

Then we can state that,

Resistive load: $\cos \varphi = 1$

Inductive load: $\cos \varphi$ (delayed)

Capacitive load: cos φ (advanced)

Note: the terms "delayed" and "advanced" refers to the current angle relating to the voltage angle.

A motor does not draw only active power, transformed after in mechanical power and heat (losses), but also absorbs reactive power needed for magnetization, but that does not produce work. On the diagram of figure 1.4, the vector P represents the active power and Q the reactive power, which added results in the apparent power S. The power factor is determined by measuring the input power, voltage and, rated load current.

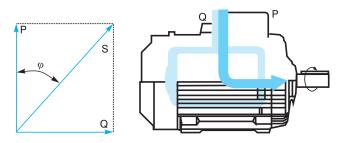


Figure 1.4 - The Power factor is determined measuring the input power, the voltage and the rated load

Power factor importance

Reactive energy limits useful (active) energy carrying capacity in the transmission, sub-transmission, and distribution, in other words, the higher the power factor, the greater the availability of active power in the system and greater is the use of the electrical system.

The electric motor plays a very important role in the industry since it represents more than 68% of the energy consumption. Therefore, it is essential to apply motors with outputs and features well adapted to its function since the power factor changes with motor load.

Power factor correction

The increase of power factor is made by the connection of a capacitive load, in general, a capacitor or a synchronous motor with overexcitation, in parallel with the load.

For example:

A three-phase electric motor, 100 HP (75 kW), IV poles, running at 100% of the rated power, with an original power factor of 0.87 and efficiency of 93.5%. Now a reactive power should be determined to raise the power factor to 0.95.

Solution:

Using the table 1.2, on the intersection of 0.87 line with the column of 0.95, we get the value 0.238 that multiplied by the motor absorbed power from the line in kW, gives the amount of reactive power necessary to increase the power factor from 0.87 to 0.95.

$$kVAr = \frac{P(HP) \times 0.7457 \times F \times 100\%}{Eff.\%}$$

= 100 x 0.7457 x 0.238 x 100%

93.5%

Where: kVAr = Three-phase power of the capacitor bank to be installed<math>P (HP) = Motor rated output F = Factor obtained in the Table 1.2Eff. % = Motor efficiency

Original			·		·	·	·		·	Require	ed Power	r Factor				·					
Power Factor	0,8	0,81	0,82	0,83	0,84	0,85	0,86	0,87	0,88	0,89	0,9	0,91	0,92	0,93	0,94	0,95	0,96	0,97	0,98	0,99	1
0,5	0,982	1,008	1,034	1,06	1,086	1,112	1,139	1,165	1,192	1,220	1,248	1,276	1,306	1,337	1,369	1,403	1,442	1,481	1,529	1,590	1,732
0,51	0,937	0,962	0,989	1,015	1,041	1,067	1,094	1,120	1,147	1,175	1,203	1,231	1,261	1,292	1,324	1,358	1,395	1,436	1,484	1,544	1,687
0,52	0,893	0,919	0,945	0,971	0,997	1,023	1,060	1,076	1,103	1,131	1,159	1,187	1,217	1,248	1,280	1,314	1,351	1,392	1,440	1,500	1,643
0,53	0,850	0,876	0,902	0,928	0,954	0,980	1,007	1,033	1,060	1,088	1,116	1,144	1,174	1,205	1,237	1,271	1,308	1,349	1,397	1,457	1,600
0,54	0,809	0,835	0,861	0,887	0,913	0,939	0,966	0,992	1,019	1,047	1,075	1,103	1,133	1,164	1,196	1,230	1,267	1,308	1,356	1,416	1,359
0,55	0,769	0,795	0,821	0,847	0,873	0,899	0,926	0,952	0,979	1,007	1,035	1,063	1,090	1,124	1,456	1,190	1,228	1,268	1,316	1,377	1,519
0,56	0,730	0,756	0,782	0,808	0,834	0,860	0,887	0,913	0,940	0,968	0,996	1,024	1,051	1,085	1,117	1,151	1,189	1,229	1,277	1,338	1,480
0,57	0,692	0,718	0,744	0,770	0,796	0,882	0,849	0,875	0,902	0,930	0,958	0,986	1,013	1,047	1,079	1,113	1,151	1,191	1,239	1,300	1,442
0,58	0,655	0,681	0,707	0,733	0,759	0,785	0,812	0,838	0,865	0,893	0,921	0,949	0,976	1,010	1,042	1,076	1,114	1,154	1,202	1,263	1,405
0,59	0,618	0,644	0,670	0,696	0,722	0,748	0,775	0,801	0,828	0,856	0,884	0,912	0,943	0,973	1,005	1,039	1,077	1,117	1,165	1,226	1,368
0,6	0,584	0,610	0,636	0,662	0,688	0,714	0,741	0,767	0,794	0,822	0,850	0,878	0,905	0,939	0,971	1,005	1,043	1,083	1,131	1,192	1,334
0,61	0,549	0,575	0,601	0,627	0,653	0,679	0,706	0,732	0,759	0,787	0,815	0,843	0,870	0,904	0,936	0,970	1,008	1,048	1,096	1,157	1,299
0,62	0,515	0,541	0,567	0,593	0,619	0,645	0,672	0,698	0,725	0,753	0,781	0,809	0,836	0,870	0,902	0,936	0,974	1,014	1,062	1,123	1,265
0,63	0,483	0,509	0,535	0,561	0,587	0,613	0,640	0,666	0,693	0,721	0,749	0,777	0,804	0,838	0,870	0,904	0,942	0,982	1,000	1,091	1,233
0,64	0,450	0,476	0,502	0,528	0,554	0,580	0,607	0,633	0,660	0,688	0,716	0,744	0,771	0,805	0,837	0,871	0,909	0,949	0,997	1,066	1,200
0,65 0,66	0,419 0,388	0,445 0,414	0,471 0,440	0,497 0,466	0,523 0,492	0,549 0,518	0,576 0,545	0,602 0,571	0,629 0,598	0,657 0,260	0,685 0,654	0,713	0,740 0,709	0,774	0,806 0,755	0,840 0,809	0,878 0,847	0,918 0,887	0,966 0,935	1,027 0,996	1,169 1,138
0,67	0,358	0,384	0,440	0,400	0,462	0,318	0,545	0,541	0,568	0,200	0,624	0,652	0,709	0,742	0,735	0,809	0,817	0,857	0,906	0,966	1,108
0,68	0,329	0,355	0.381	0,407	0,433	0,400	0,486	0,512	0,539	0,567	0.595	0,623	0,650	0,684	0,716	0,750	0,788	0,828	0,876	0,937	1,079
0,69	0,299	0,325	0,351	0,377	0,403	0,429	0,456	0,482	0,509	0,537	0,565	0,593	0,620	0,654	0,686	0,720	0,758	0,798	0,840	0,907	1,049
0,7	0,270	0,296	0,322	0,348	0,374	0,400	0,427	0,453	0,480	0,508	0,536	0,564	0,591	0,625	0,657	0,691	0,729	0,769	0,811	0,878	1,020
0,71	0,242	0,268	0,294	0,320	0,346	0,372	0,399	0,425	0,452	0,480	0,508	0,536	0,563	0,597	0,629	0,663	0,701	0,741	0,783	0,850	0,992
0,72	0,213	0,239	0,265	0,291	0,317	0,343	0,370	0,396	0,423	0,451	0,479	0,507	0,534	0,568	0,600	0,624	0,672	0,712	0,754	0,821	0,963
0,73	0,186	0,212	0,238	0,264	0,290	0,316	0,343	0,369	0,396	0,424	0,452	0,480	0,507	0,541	0,573	0,607	0,645	0,685	0,727	0,794	0,936
0,74	0,159	0,185	0,211	0,237	0,263	0,289	0,316	0,342	0,369	0,397	0,425	0,453	0,480	0,514	0,546	0,580	0,618	0,658	0,700	0,767	0,909
0,75	0,132	0,158	0,184	0,210	0,236	0,262	0,289	0,315	0,342	0,370	0,398	0,426	0,453	0,487	0,519	0,553	0,591	0,631	0,673	0,740	0,882
0,76	0,106	0,131	0,157	0,183	0,209	0,235	0,262	0,288	0,315	0,343	0,371	0,399	0,426	0,460	0,492	0,526	0,564	0,604	0,652	0,713	0,855
0,77	0,079	0,106	0,131	0,157	0,183	0,209	0,236	0,262	0,289	0,317	0,345	0,373	0,400	0,434	0,466	0,500	0,538	0,578	0,620	0,686	0,829
0,78	0,053	0,079	0,105	0,131	0,157	0,183	0,210	0,236	0,263	0,291	0,319	0,347	0,374	0,408	0,440	0,474	0,512	0,562	0,594	0,661	0,803
0,79	0,026	0,062	0,078	0,104	0,130	0,153	0,183	0,209	0,236	0,264	0,292	0,320	0,347	0,381	0,403	0,447	0,485	0,525	0,567	0,634	0,776
0,8	0,000	0,026	0,062	0,078	0,104	0,130	0,157	0,183	0,210	0,238	0,266	0,264	0,321	0,355	0,387	0,421	0,459	0,499	0,541	0,608	0,750
0,81		0,000	0,026	0,062	0,078	0,104	0,131	0,157	0,184	0,212	0,240	0,268	0,295	0,329	0,361	0,395	0,433	0,473	0,515	0,582	0,724
0,82			0,000	0,026	0,062	0,078	0,105	0,131	0,158	0,186	0,214	0,242	0,269	0,303	0,335	0,369	0,407	0,447	0,496	0,556	0,696
0,83				0,000	0,026	0,062	0,079	0,105	0,132	0,160	0,188	0,216	0,243	0,277	0,309	0,343	0,381	0,421	0,463	0,536	0,672
0,84					0,000	0,026	0,053	0,079	0,106	0,140	0,162	0,190	0,217	0,251	0,283	0,317	0,355	0,395	0,437	0,504	0,645
0,85						0,000	0,027	0,053 0,026	0,080	0,108	0,136	0,164 0,137	0,194	0,225	0,257 0,230	0,191 0,265	0,229	0,369 0,343	0,417 0,390	0,476 0,451	0,620 0,593
0,86 0,87							0,000	0,020	0,033	0,081	0,082	0,137	0,107	0,198	0,230	0,205	0,301	0,343	0,364	0,431	0,595
0,88									0,027	0,033	0,056	0,084	0,141	0,172	0,204	0,211	0,248	0,290	0,337	0,398	0,540
0,89										0,020	0,028	0,056	0,086	0,143	0,149	0,183	0,240	0,262	0,309	0,370	0,512
0,9											0,020	0,028	0,058	0,089	0,121	0,155	0,192	0,234	0,281	0,342	0,484
0,91												.,	0,030	0,061	0,093	0,127	0,164	0,206	0,253	0,314	0,456
0,92														0,031	0,063	0,097	0,134	0,176	0,223	0,284	0,426
0,93														-	0,032	0,068	0,103	0,145	0,192	0,253	0,395
0,94																0,034	0,071	0,113	0,160	0,221	0,363
0,95													ĺ	ĺ			0,037	0,079	0,126	0,187	0,328
0,96																		0,042	0,089	0,149	0,292
0,97																			0,047	0,108	0,251
0,98																				0,061	0,203
0,99																					0,142

Table 1.2 - Power factor correction

1.2.6 Efficiency

The electric motor efficiency is defined as how efficient it is to make the conversion of the line absorbed electric energy into mechanical energy available at the shaft end. The efficiency defines how this transformation is made. By calling mechanical power available at the shaft end "output" (P.,) and electric energy absorbed by the motor from the supply "input" (P₂), the efficiency is the ratio between these two, i.e.,

$$\eta = \frac{P_{u}(W)}{P_{a}(W)} = \frac{745 \cdot P(HP)}{\sqrt{3} \cdot U \cdot I \cdot \cos \phi} = \frac{1000 \cdot P(kW)}{\sqrt{3} \cdot U \cdot I \cdot \cos \phi}$$

or

 $\eta\% = \frac{745 \text{ . P (HP)}}{\sqrt{3} \text{ . U.I } \cos \phi}$ — . 100

1.2.7 Torque Versus Power Ratio

When mechanical energy is applied in the form of a rotating movement, the developed output depends on the torque C and on the rotational speed n. The ratio is as follows:

$$P(HP) = \frac{C(kgfm) \cdot n(rpm)}{716} = \frac{C(Nm) \cdot n(rpm)}{7024}$$
$$P(kW) = \frac{C(kgfm) \cdot n(rpm)}{974} = \frac{C(Nm) \cdot n(rpm)}{9555}$$

Inversely

$$C (kgfm) = \frac{716 \cdot P (HP)}{n (rpm)} = \frac{974 \cdot P (kW)}{n (rpm)}$$
$$C (Nm) = \frac{7024 \cdot P (HP)}{n (rpm)} = \frac{9555 \cdot P (kW)}{n (rpm)}$$

1.3 Single-Phase AC Systems

Alternating current is distinguished by that voltage, which (instead of being a steady one, as for instance between the poles of a battery) varies with time, alternately reversing its direction.

In the single-phase systems, the alternating voltage U (Volts) is generated and applied between two wires to which the load absorbing current I (Amperes) is connected - see figure 1.5a.

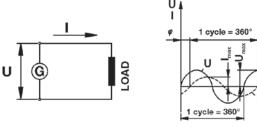


Figure 1.5a

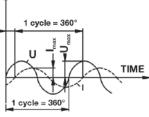


Figure 1.5b

By representing the values U and I in a graph at successive instants, we obtain figure 1.5b. Figure 1.5b also shows some values which will be defined further on. It can be noted that the voltage and current waves are not "in phase", i.e. they do not pass the zero point simultaneously, notwithstanding the fact that they are of the same frequency. This occurs with many types of electrical loads e.g. electric motors (reactive loads).

Frequency

Is the number of times per second the voltage changes its direction and returns to the initial condition. It is expressed in "cycle per second" or "Hertz" and is represented by Hz.

Maximum voltage (Umax)

This is the "peak value" of the voltage, i.e. the instantaneous crest value achieved by the voltage during one cycle (one half of the cycle is positive and the other half negative, this is reached twice per cycle).

Maximum current (Imax)

This is the "peak" of the current.

Effective value of voltage and current (U and I)

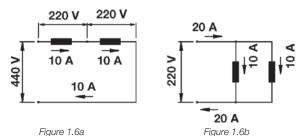
It is the value of the continuous voltage and current which generate an output corresponding to that generated by the alternated current. We can identify the effective value as:

$$U = \frac{U_{max}}{\sqrt{2}} \quad \text{and} \quad I = \frac{I_{max}}{\sqrt{2}}$$

For example:

If we connect a "resistance" to an AC circuit (cos ϕ = 1) with U $_{max}$ = 311 V and I_{max} = 14. 14 A.

the developed output power will be:


P = U . I . COS
$$\phi = \frac{U_{max}}{\sqrt{2^{-1}}} \cdot \frac{I_{max}}{\sqrt{2}} \cdot 311 \cdot 14.14 \cdot 1$$

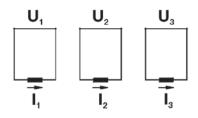
Note: usually, when referring to voltage and current, for example, 220 V or 10 A, without mentioning any other factor, we are referring to voltage or current effective values, which are normally applied.

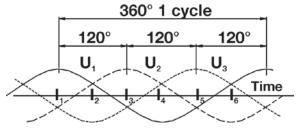
Phase displacement (φ)

Phase displacement means "delay" of the current wave with respect to the voltage wave (see figure 1.5b). Instead of being measured in time (seconds), this delay is usually measured in degrees, corresponding to the fraction of a complete cycle, taking 1 cycle = 360°. However, phase displacement is usually expressed by the angle cosine (see Item 1.2.5 -Power Factor).

1.3.1 Connection: Parallel and Series

Specification of Electric Motors | 11

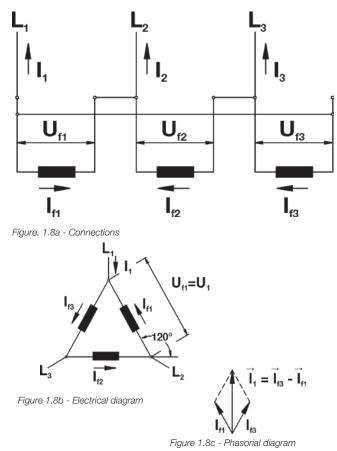



Two equal loads can be connected, for example, to a singlephase system, in two different ways:

- By making a series connection (figure 1.6a), where the total current flows through the two loads. In this case, the voltage across each load is half of the circuit voltage.
- By making a parallel connection (figure 1.6b), where the voltage is applied across each load. In this case, the current in each load is half of the total circuit current.

1.4 Three-Phase AC System

A three-phase system is formed by associating three singlephase voltage system, U₁, U₂ and U₃ which so the phase displacement between any two of them ch is 120°, which means, the "delays" of U₂ relating to U₁, U₃ relating to U₂, relating to U₃, are equal to 120° (considering a complete cycle = 360°). The system is balanced if the three voltages have the same effective value, U₁ = U₂ = U₃, as shown in figure 1.7.


By interconnecting the three single-phase systems and by eliminating the unnecessary wires, we have a three-phase system: three balanced voltages U_1 , U_2 and U_3 the phases of which are reciprocally displaced by 120° and applied between the three wires of the system. There are two different ways of making a connection, as shown in the following diagrams. In these diagrams the voltage is usually shown by inclined arrows or rotating vectors and maintaining between them the angle corresponding to the phase displacement (120°), according to figures 1.8a, b, and c, and figures 1.9a, b, and c.

1.4.1 Delta Connection

By connecting the three single-phase systems, as shown in figures 1.8a, b and c, we can eliminate the three wires, leaving only one at each connecting point. Thus, the three-phase system can be reduced to three-wires, L_1 , L_2 , and L_3 .

Line voltage (U)

Is the rated voltage of the three-phase system applied between any two of these three wires L_1 , L_2 , and L_3 .

Line current (I)

The current in any one of the three wires L_1 , L_2 , and L_3 .

Phase voltage and current (U_r and I_r)

Is the voltage and current of each one of the considered single-phase systems.

Looking at the diagram in fig. 1.7b, one can see that:

$$\begin{array}{l} U = U_{\rm f} \\ I = \sqrt{3} \\ \overrightarrow{I} = \overrightarrow{I_{\rm f3}} - \overrightarrow{I_{\rm f1}} (Figure \ 1.732 \ I_{\rm f} \end{array}$$

Example:

Consider a balanced three-phase system with a rated voltage of 220 V. The measured line current is 10 amperes. By connecting a three-phase load to this system, composed of three equal loads connected in delta, what is the voltage across, and the current in each load?

We have $U_f = U_1 = 220$ V in each load.

if I = 1.732 . I, we have I = 0.577 . I = 0.577 . 10 = 5.77 A in each one of the load.

1.4.2 Star Connection

By connecting one of the wires of each single-phase system to a common point, the three remaining wires will form a three-phase star system (see figure 1.9a). Sometimes the three-phase star system is made as a "four wire" or with the "neutral wire" system. The fourth wire is connected to the common point for the three phases. The line voltage, or rated voltage of the three-phase system - and the line current - are defined in the same way as for delta-connections.

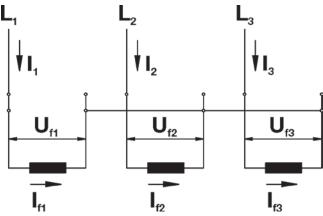


Figure 1.9a - Connections

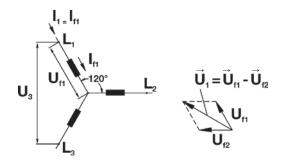


Figure 1.9b - Electrical wiring diagram Figure 1.9c - Phasor diagram

By analyzing the wiring diagram in Figure 1.9b, one can note that:

$$\begin{split} I &= I_{f} \\ U = \sqrt{3}^{-1} \cdot U_{f} = 1.732 \cdot U_{f} \\ \vec{U} &= \vec{U}_{f1} - \vec{U}_{f2} \mbox{ (figure 1.9c)} \end{split}$$

Example:

Consider a three-phase load composed of three equal loads. Each load is connected to a voltage of 220 V, absorbing 5.77 A. What is the rated voltage of the three-phase system feeding this load under normal conditions (220 and 5.77 A)? What is the line current?

We have	U _f =	220 V (rated voltage for each load)
	U =	1.732 . 220 = 380 V
	=	I _f = 5.77 A

1.5 Three-Phase Induction Motor

Fundamentally a three-phase induction motor consists of two parts: stator and rotor.

Stator consists of

- The frame (1) is the supporting structure of the assembly; manufactured of iron, steel, die-cast aluminum, resistant to corrosion and with cooling fins.
- The lamination core (2) constructed with magnetic steel plates.
- The three-phase winding (8) comprises three equal sets of coils, one set for each phase, forming a balanced threephase system when connected to a three-phase power supply.

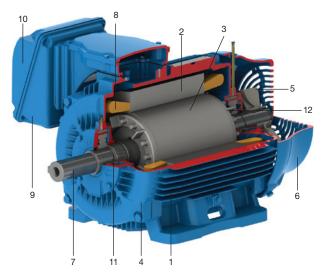
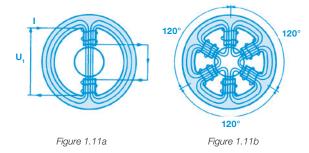


Figure 1.10

The rotor consists of:

- The shaft (7) which transmits the mechanical output developed by the motor.
- The laminated magnetic core (3) the rotor steel sheets have the same characteristics as the stator steel sheets.
- Bars and short-circuit rings (12) are aluminum die castings formed as one piece.

Other components of the three-phase induction motor: End shields (4)

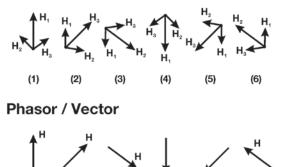

- Fan (5)
- Fan cover (6)
- Terminal box (9)
- Terminals (10)
- Bearings (11)

Boarnigo (11)

This manual covers "squirrel cage rotor motor" where the rotor consists of a set of non-insulated bars that are interconnected by short-circuiting rings. What characterizes an induction motor is a fact that only the stator is connected to the power supply. The rotor is not power supplied externally and the currents that flow through it are induced electromagnetically by the stator from which comes the induction motor name.

1.5.1 Working Principle - Rotating Field

When an electric current flows through a coil, a magnetic field is generated, the direction of which is along the coil axis and proportional in value to the current.



- a) Figure 1.11a shows a single-phase winding through which flow the current I, and the field H, generated by the current. The winding is composed of one pair of poles, the North Pole and the South Pole, the effects of which are added to produce field H. The magnetic flux passes through the rotor, across both poles and links up with itself by means of the stator core. When "I" is an alternating current, field H is established in the same way, so that its value is represented at every instant, by the same chart shown in figure 1.5b, also reversing its direction at every half cycle. The field H is pulsating, its intensity "varies" proportionally to the current, always in the same direction - North-South.
- b) Figure 1.11b shows a three-phase winding consisting of three single-phase winding displaced 120° each other. If this winding is fed from a three-phase system, currents I_{1} , I_{2} and I_{3} will generate their own magnetic fields H_{1} , H_{2} and H_{3} in a similar way. The displacement between these fields is 120°; moreover, since they are proportional to the respective currents, the phase displacement in time between them will equally be 120°, which can be represented in a chart similar to figure 1.7. At any instant, the total resulting field H will be equal to the graphical sum of field H_{1} , H_{2} and H_{3} .

Figure 1.12 shows this graphic sum for six successive steps

Phasor Diagram

(3)

(2)

At instant (1), figure 1.12 shows that the field H_1 is at its maximum whereas fields H_2 and H_3 are negative and have the same value: 0.5. The resulting field (graphic sum) is shown in the upper part of figure 1.12 (1) and has the same direction as the winding of phase 1.

(4)

(5)

(6)

Repeating this procedure for the instants 2, 3, 4, 5 and 6 of figure 1.7 we can see that the resulting field H presents a constant intensity, but its direction keeps rotating to complete a whole turn at the end of a cycle.

We can, therefore, conclude that a three-phase winding fed from three-phase currents generates a "rotating field" as if one single pair of poles was present, rotating and fed with a constant current. This rotating field, generated by the threephase stator winding, induces certain voltages into the rotor bars (magnetic flux lines go through the rotor bars) which, being short-circuited, generate currents and, as a consequence, create a field on the rotor with reverse polarity if compared with the rotating field polarity. Since opposite fields attract each other and considering the stator field (rotating field) is rotative, the rotor tends to follow the speed of this field. The result of this is that motor torque is created in the rotor that makes it rotate and then drive the load.

1.5.2 Synchronous Speed (ns)

The synchronous speed of the motor is defined by the rotation speed of the rotating field which depends on the number of poles (2p) of the motor and on the line frequency (f) in Hertz. The field makes a complete revolution at each cycle and "f" is the system frequency in cycles per second (Hertz). Winding may have more than one pair of poles which can be alternately distributed (one "North" and one "South") along the circumference of the magnetic core. Since the rotating field runs through one pair of poles at each cycle and the winding has poles or "p" pair of poles, the speed of the field is:

$$n_{s} = \frac{60.f}{p} = \frac{120.f}{2p} (rpm)$$

Examples:

a) What is the synchronous speed of a six-pole motor, 50 Hz?

$$n_s = \frac{120.50}{6} = 1000 \text{ rpm}$$

b) A twelve-pole motor, 60 Hz?

$$n_s = \frac{120.60}{12} = 600 \text{ rpm}$$

It must be remembered that the number of poles of a motor must always be an even number in order to form pairs of poles. The table 1.3 shows the synchronous speed of the more common number of poles at 60 Hz and 50 Hz.

Number of poles	Synchronous speed per minute					
Number of poles	60 Hertz	50 Hertz				
II	3.600	3.000				
IV	1.800	1.500				
VI	1.200	1.000				
VIII	900	750				
Х	720	600				

Table 1.3 - Synchronous speed

For 2-pole motors, as in item 1.5.1, the field turns by one complete revolution at each cycle. Thus, electrical degrees are equivalent to mechanical degrees. For motors with more than 2 poles, a smaller "geometrical" revolution is realized by the field.

For example:

For a 6-pole motor, we will have, in a complete cycle, a field revolution of $360^{\circ} \times 2/6 = 120$ geometrical degrees. This is equivalent to 1/3 of the speed in 2 poles. We conclude, then, that:

Geometrical degrees = Mechanical degrees x p

1.5.3 Slip (s)

If the motor runs at a speed different from the synchronous speed, i.e. differing from the speed of the rotating field, the rotor winding "cut" the magnetic force lines of the field and so, according to the electromagnetism laws, induced currents will flow through the rotor winding. The heavier the load the higher must be the required torque to move it.

To obtain a higher torque, the speed difference must be greater so that induced current and the generated field becomes higher. Therefore, as the load increases, the motor speed decreases. When the load is at zero (motor at no-load) the rotor practically rotates at its synchronous speed.

The difference between motor speed (n) and synchronous speed (ns) is called slip (s), expressed as rpm or fraction of the synchronous speed or as a percentage of the synchronous speed:

s (rpm) = n_s - n; s =
$$\frac{n_s - n}{n_s}$$
; s (%) = $\frac{n_s - n}{n_s}$. 100

Therefore, for a given slip s (%), the motor speed will be:

$$n = n_s . (1 - \frac{s(\%)}{100})$$

Example:

What is the slip of a 6-pole motor when the speed is 960 rpm?

$$s(\%) = \frac{1000 - 960}{1000}$$
. 100
 $s(\%) = 4\%$

1.5.4 Rated Speed

Rated speed is the motor speed (rpm) operating at rated power, at rated voltage and frequency. As described in item 1.5.3, it depends on the slip and on the synchronous speed.

$$n = n_s . (1 - \frac{s \%}{100}) rpm$$

1.6 Insulation Materials and Insulation Systems

Considering that an induction motor is a simple designed and rugged construction machine, its lifetime will exclusively depend on the quality level of the insulation materials. Motor insulation is affected by several factors including moisture, vibration, corrosive environments, and others. Among all these factors, the operating temperature of the insulating materials is the most critical.

The motor lifetime is reduced by half when subject 8% to 10 °C in operation above the rated temperature of the class of insulating material. To ensure a longer lifetime for the electric motor, the use of thermal sensors is recommended for the winding protection.

When we refer to motor lifetime reduction, we do not refer specifically to excessively high temperatures resulting in sudden insulation burn out. Insulation lifetime (in terms of operating temperature much below the one affecting the insulation) refers to permanent aging of the insulation material which becomes dry and loses its insulation properties. As a result, it will not withstand the voltage applied to it, thus causing short-circuit.

Experience shows that the insulation has a practically unlimited duration, if its temperature is kept below the limit of its thermal class. Any increasing value above such a limit will reduce the insulation lifetime proportionally. Such a limit of temperature is much lower than the temperature that causes insulation burnout and it depends on the type of used material. This limit of temperature refers to insulation's hottest spot and not necessarily to the whole insulation. On the other hand, a single weak spot in the insulation is enough to damage the winding completely.

With the increasing use of frequency inverters for the speed control of induction motors, other application criteria must also be considered for the preservation of the insulation system. For more details see "Influence of the frequency inverter on the motor insulation".

1.6.1 Insulation Material

The insulation material prevents, limits and directs the electric current flux. Although the insulating material is primarily intended to block the current flux from a cable to the ground or to the lowest potential, it also serves to provide mechanical support, protect the cable from degradation caused by the environment's influences and to transfer the heat to the external environment.

Based on system requirements, gases, liquids, and solid materials are used to insulate electric equipment. Insulation systems affect the quality of the equipment, and the type and quality of the insulation affect the cost, weight, performance and useful lifetime.

1.6.2 Insulation System

A combination of two or more insulation materials applied to an electric equipment is designated insulation system. This combination on an electric motor consists in magnet wire, insulation of the slot, insulation of the slot closing, face to face insulation, varnish and/or impregnation resin, insulation of the connection leads and welding insulation. Any material or component that is not in contact with the coil is not considered as part of the insulation system.

1.6.3 Thermal Classes

Since the temperature of electro-mechanical products is basically the predominant factor for the aging of the insulation material and insulation system, certain basic thermal classifications are recognized and applied all over the world.

Insulation materials and insulation system are classified based on the resistance to temperature for a long period of time. The standards listed below refers to the classification of materials and insulation systems:

Material	Systems	Material and System
UL 746B	UL 1446	IEC 60085
IEC 60216	UL 1561 / 1562	
	IEC 60505	
	IEEE 117	

Table 1.4 - Standards for materials and insulation system

The thermal classes defined for the materials and insulation systems are the following:

	Temperature Class					
Temperature (°C)	IEC 60085	UL 1446				
90	Y (90 °C)	-				
105	A (105 °C)	-				
120	E (120 °C)	120 (E)				
130	B (130 °C)	130 (B)				
155	F (155 °C)	155 (F)				
180	H (180 °C)	180 (H)				
200	N (200 °C)	200 (N)				
220	R (220 °C)	220 (R)				
240	-	240 (S)				
above 240°C	-	above 240 (C)				
250	250	above 240 (C)				

Table 1.5 - Thermal classes

IEC - International Electrotechnical Commission - nongovernmental organization for standards in the related electrical, electronic and technology areas. UL - Underwriters Laboratories - American product certification body.

It is understood that the thermal class represents the maximum temperature that the electromechanical equipment can reach on its hottest spot when operating at rated load without reducing its lifetime. The thermal classification of a material or system is based on a comparison with well-known reference systems or materials. However, for those cases where there is not any reference material, the thermal class can be obtained by exploiting the damage curve (Arhenius Graphic) for a certain time period (IEC 216 specifies 20,000/hours).

1.6.4 Insulating Materials in Insulation Systems

The specification of a product within a certain thermal class does not mean that each insulating material used has the same thermal capacity (thermal class). The temperature limit for an insulation system can not be directly related to the thermal capacity of the individual materials in this system. In a system the thermal performance of a material can be improved by protective characteristics of certain material used with this material. For example: a 155 °C class material can have its performance improved when the set is impregnated with varnish for class 180 °C.

1.6.5 WEG Insulation System

In order to meet different market requirements and specific applications, associated to an excellent technical performance, nine insulation systems are used for WEG motors.

The round enameled wire is one of the most important components used in the motor since the electric current flows through it and creates the magnetic field required for motor operation. During the production process, the wires are submitted to mechanical traction efforts, flexion and abrasion electrical effects that also affect the wire insulating material. During the operation, the thermal and electrical effects act on the wire insulation material. For this reasons, the wire requires an outstanding mechanical, thermal and electrical insulation resistance.

The enamel used currently on the wire ensures such properties, where the mechanical property is assured by the outside enamel coat that resists to abrasion effects while inserting it into the stator slots. The internal enamel coat ensures high dielectric resistance and the set provides thermal class 200 °C to the wire (UL File E234451). This wire is used for all Class B, F and H motors. Smoke Extraction Motors are built with special wire for extremely high temperatures.

Films and laminated insulating materials are intended to isolate thermally and electrically all motor winding parts. The thermal class is indicated on the motor nameplate. These films are aramid and polyester based films and also laminated films are applied to the following areas:

- between the coils and the slot (slot bottom film) to insulate the lamination core (ground) from the enameled wire coil;
- between phases: to isolate electrically one phase from the other phase
- Closing of the stator slot to insulate electrically that coil placed on the top of the stator and for mechanical purposes so as to keep the wires inside the stator slot.

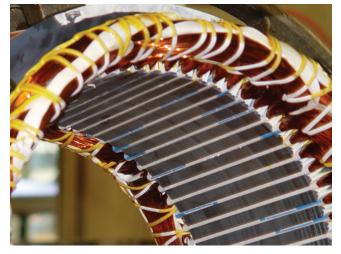


Figure 1.12a - Wires and films used on the stator

The impregnation varnishes and resins are mainly intended to maintain all enameled wire coil as a block with all stator components through agglutination of such materials and to fill all voids inside the slot.

This agglutination avoids vibration and friction between the wires. Such friction could cause failures on the wire enamel, then resulting in a short-circuit.

The agglutination (filling of voids) also helps the heat dissipation generated by the wire and mainly, when motors are fed by frequency inverter, prevents/reduces the formation of partial discharges (corona effect) inside the motor.

Two types of varnishes and two types of impregnation varnishes are currently used; all of them are polyester varnishes so as to meet motor construction and application requirements. Silicon resin is only used for special motors designed for very high temperatures.

Varnishes and resins usually improve thermal and electrical characteristics of the impregnated materials in such a way to classify these impregnated materials in higher thermal class if compared to the same materials without impregnation.

The varnishes are applied by the immersion impregnation process and then oven-dried. Solventless resins are applied by the continuous flow process.

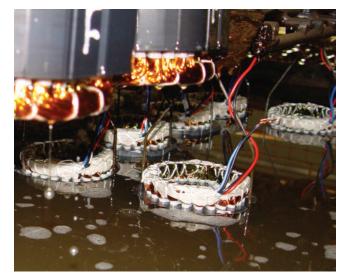


Figure 1.12.b - Immersion impregnation process

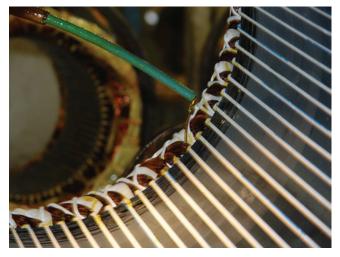


Figure 1.12.c - Resin applied by continuous flow process

The connection leads consist of elastomeric insulation materials that have the same thermal class as the motor. These materials are exclusively used to insulate electrically the lead from the external environment. They have high electric resistance and proper flexibility to allow easy handling during manufacturing process, installation and motor maintenance.

For certain applications, such as submersible pumps, the leads must be chemically resistant to the oil of the pump. The flexible pipes are intended to cover and insulate electrically the welded connections between the coils wires and the leads and the connections between wires. They are flexible to allow them to get shaped to welding points and to the coil head tying. Three types of pipes are currently used:

- Heat-shrink polyester tubing Class of 130 °C
- Polyester tube coated with acrylic resin Class of 155 °C
- Fiberglass tube coated with silicon rubber Class of 180 °C

Page 128

2. Power Supply Characteristics

2.1 Power Supply System

The power supply system can be single or three-phase. Single-phase system is mostly used in homes, commercial centers, farms, while three-phase system is used in industries. Both operate at 60 Hz or 50 Hz.

2.1.1 Three-Phase System

The three-phase voltages mostly used in industries are: Low voltage: 220 V, 380 V and 440 V

High voltage: 2.300 V, 4.160 V and 6.600 V

The star connected three-phase low voltage system consists of three-phase leads (L_1 , L_2 , L_3) and a neutral conductor (N). The last one is connected to the generator star point or to the transformer secondary winding (as shown in figure Figure 2.1).

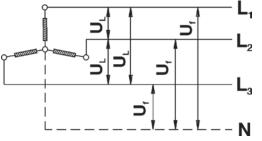


Figure 2.1 - Three-phase system

2.1.2 Single-Phase System

Single phase motors are connected to two phases (U_L line voltage) or to one phase and to neutral conductor (U_f phase voltage). So the single-phase motor rated voltage must be equal to U_L or U_f system voltage. When several single-phase motors are connected to a three-phase system (formed by 3 single-phase systems), care must be taken in order to distribute them uniformly so as to avoid unbalance between phases.

Single wire earth return (SWER)

The single-phase earth return (SWER) is an electric system where the ground lead operates as return lead for the load current. This is applied as solution for the use of single-phase motors from power supply not having neutral available. Depending on the available electric system and on the characteristics of the soil where it will be installed (usually on farm power supply), we have:

a) Single cable system

The single wire earth return (SWER) system is considered the practical and economical option. However, it can be used only where the origin substation outlet is star grounded.

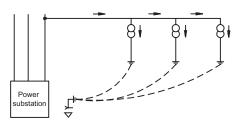


Figure 2.2 - Single cable system

b) Single cable system with insulation transformer

Besides requiring a transformer, this system has a few disadvantages such as:

- Link power limitation to isolation transformer rated power;
- The grounding system of the isolation transformer must be reinforced. Lack of this will result in absence of energy to the whole link.

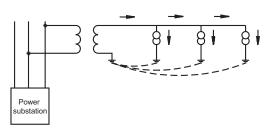


Figure 2.3 - Single cable system with insulation transformer

c) Single wire earth return (SWER) system with partial neutral

It is applied as a solution of the use of single wire earth return (SWER) system in regions with land (soil) of high resistivity when it is difficult to get ground resistance values of the transformer within the maximum design limits.

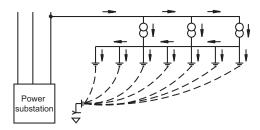


Figure 2.4 - Single wire earth return system with partial neutral

3. Characteristics of the Electric Motor Power Supply

3.1 Rated Voltage

This is the line voltage for which the motor has been designed.

3.1.1 Multiple Rated Voltage

Motors are generally supplied with sufficient terminals to enable alternative connections. This means that they can operate on at least two different voltages. The main types of alternative terminal connections are:

a) Series-parallel connection

The winding of each phase is divided into two equal parts (halves) (please consider that the number of poles is always a multiple of two, so this type of connection is always possible). By connecting the two halves in series, each half will have a

- voltage to the half rated phase voltage of the motor;
- By connecting the two halves in parallel, the motor can be supplied with a voltage equal to one half of the previous voltage, without affecting the voltage applied to each coil. (refer to examples given in figures 3.1a and b).

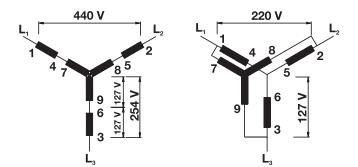


Figure 3.1a - Series-parallel connection Y

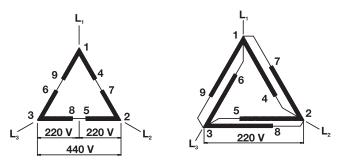


Figure 3.1b - Series-parallel connection Δ

This type of connection requires nine terminals on the motor. The most common dual voltage system is 220/440 V, i. e. the motor is parallel connected when supplied for 220 V, or alternatively, it is series connected when supplied for 440 V. Fig. 3.1a and 3.1b show normal terminal numbering, as well as connection diagrams for this type of motor - both for star or delta connected motors. The same diagrams apply to any other two voltages, provided that one is the double of the other, e.g. 230/460 V.

b) Star-Delta connection

Two ends of each phase winding are brought out to terminals. By connecting the three phases in delta, each phase receives total line voltage, e.g. 220 volts (Fig. 3.2). By connecting the three phases in star, the motor can be connected to a line voltage of $220 \times \sqrt{3} = 380$ V. The winding voltage remains at 220 volts per phase.

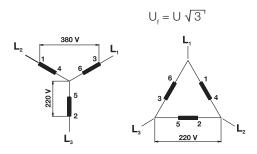


Figure 3.2 - Star-delta connection Y - ∆

This type of connection requires six terminals on the motor and is suitable for any dual voltage provided that the second voltage be equal to the first voltage multiplied by $\sqrt{3}$).

Examples: 220/380 V - 380/660 V - 440/760 V

In the example 440/760 V, the stated higher voltage is used to indicate that the motor can be driven by star-delta switch.

c) Triple rated voltage

The two previous alternative connection arrangements can be obtained in one motor if the winding of each phase is divided into two halves enabling series-parallel connection. All terminals have to be accessible so that the three phases can be connected in star or delta. This means that there can be four alternatives for rated voltage:

- 1) Parallel-delta connection;
- 2) Star-parallel connection, being the rated voltage equal to $\sqrt{3}\,x$ the first one;
- 3) Series-delta connection, i. e. the rated voltage being twice the value of the first one;
- 4) Series-star connection, the rated voltage is equal to $\sqrt{3}$ x the third one. However as this voltage would be higher the 690 V, it is only indicated as reference for star-delta connection.

Example: 220/380/440(760) V

Note: 760 V (only for starting) This type of connection requires twelve terminals and

Fig. 2.7 shows the normal numbering on the terminals as well as the connection diagram for the three rated voltages.

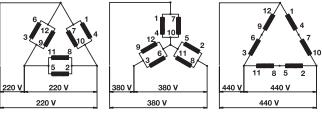


Figure 3.3

3.2 Rated Frequency (Hz)

This is the network frequency for which the motor has been designed.

3.2.1 Connection to Different Frequencies

Three-phase motors wound for 50 Hz can also be connected to a 60 Hz network,

- a) By connecting a 50 Hz motor, of the same voltage, to a 60 Hz network, the motor performance will be as follows:
- same output;
- same rated current;
- starting current decreases 17%;
- starting torque decreases 17%;
- breakdown torque decreases 17%;
- rated speed increases 20%.
- Note: please consider the required outputs for motors that drive machines with variable torque and speed.

b) If voltage changes proportionally to frequency, the performance will be:

- motor output increase 20%;
- rated current is the same;
- starting current will be approximately the same;
- starting torque will be approximately the same;
- breakdown torque will be approximately the same;
- rated speed increases 20%.

3.3 Voltage and Frequency Variation Tolerance

As per standard IEC 60034-1, for induction motors, the combinations of voltage and frequency variations are classified as Zone A or Zone B (figure 3.4).

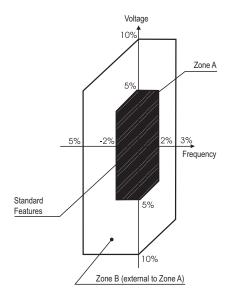


Figure 3.4 - Limits of voltage and frequency variations under operation

A motor must be capable of performing its main function continuously at Zone A, however it may not develop completely its performance characteristics at rated voltage and frequency (see rated characteristics point in figure 3.4.a) showing few deviations. Temperature rises can be higher than those at rated voltage and frequency.

A motor must be capable of performing its main function at Zone B, however it may present higher deviations than those of Zone A in reference to performance characteristics at rated voltage and frequency. Temperature rises can be higher than those at rated voltage and frequency and probably higher than those of Zone A. The extended operation at Zone B is not recommended.

Source: ABNT NBR 17094 (2008)

3.4 Three-Phase Motor Starting Current Limitation

Whenever possible a squirrel cage three-phase motor should be started direct online (D.O.L.) by means of contactors. It must be taken into account that for a certain motor the torque and current values are fixed, irrespective the load, for a constant voltage. In cases where the motor starting current is excessively high, harmful consequences may occur:

- a) High voltage drop in the power supply system. Due to that, equipment connected to the system may be affected;
- b) The protection system (cables, contactors) must be overdesigned resulting in higher cost;
- c) Utilities regulations limiting the line voltage drop.

If D.O.L starting is not possible due to these problems, indirect connection system can be used so as to reduce starting current

- Star-delta switch
- Compensating switch
- Series-parallel switch
- Electronic start (Soft-Starter)

3.4.1 D.O.L Starting

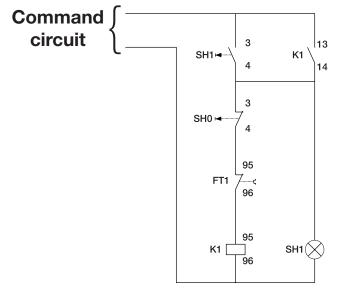


Figure 3.5 - Command circuit - direct starting

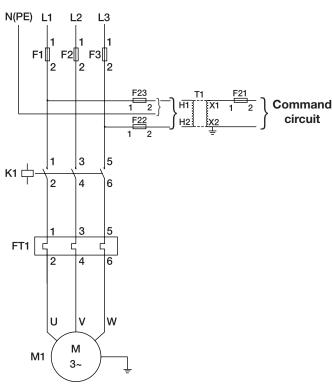


Figure 3.6 - Power circuit - direct starting

F1. F2. F3 - Power fuses F21. F22. F23 - Control fuses

- T1 Control transformer
- K1 Contactors
- FT1 Overload relay
- SH1 Control button
- KT1 Time relay M1 - Motor

Optional accessories

- Phase fault relay
- Minimum/maximum voltage relay
- Ammeter - Voltmeter
- Ohmmeter

3.4.2 Starting with Star-Delta Switch ($Y - \Delta$)

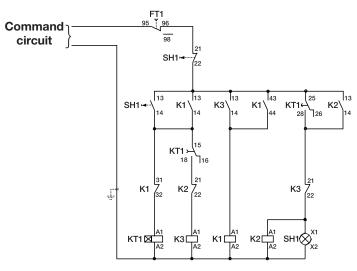


Figure 3.7 - Command circuit - starting with star-delta switch

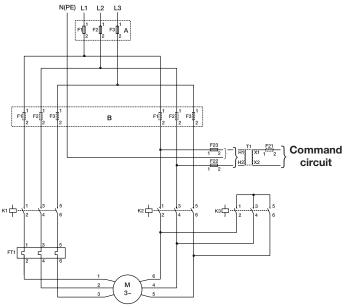


Figure 3.8 - Power circuit - starting with star-delta switch

Note: for outputs up to 75 HP (220 V), 125 HP (380 V) and 175 HP (440 V) You must use connection "A" (protection by 3 fuses). For higher outputs you must use the connection "B" (protection by 6 fuses), where the fuse set F1, F2, F3 is equal to the fuse set F4, F5, F6.

F1. F2. F3 - Power fuse (F1. F2. F3 and F4. F5. F6) - Power fuse F21. F22. F23 - Control fuse T1 - Control transformer K1. K2. K3 - Contactors FT1 - Overload relay SH1 - Control button KT1 - Time relay M1 - Motor Optional accessories

- Phase fault relay
 Minimum/maximum voltage relay
- Ammeter
- Voltmeter
- Ohmmeter

When starting by the Star-Delta method it is essential that the motor windings are suitable for operating on a dual voltage, e.g. 220/380 V, 380/660 V or 440/760 V. Motors must have at least six connection terminals. Star-Delta starting can be used if the torque is high enough to ensure the machine acceleration with reduced current. When star-connected, the current is reduced to 25-33% of the starting current reached when Delta connected.

The resistive load torque can not exceed the motor starting torque (figure 3.9) and during the delta commutation process the achieved values can not exceed the allowed one. On the other hand, there are cases where this staring method can not be used, as shown in figure 3.10.

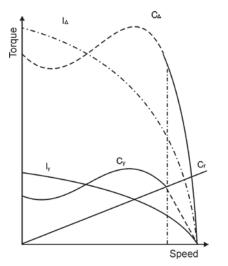


Figure 3.9 - Current and torque for star-delta starting of a squirrel cage motor driving a load with resistive torque C,

- current in delta
- current in star
- C_y C_y C_{Λ} torque in star
- _ toraue in delta
- resistive toraue

Figure 3.11 shows a high resistive torque Cr.

If the motor is started in star connection it will accelerate the load up to approximately 85% of the rated speed. At this point the starter must be switched to delta. In this example, the current (which is close to its rated value - e.g. 100%) jumps suddenly to 320% which is of no advantage since the starting current was only 190%.

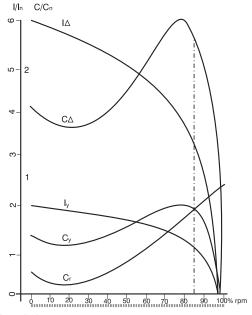


Fig. 3.11 shows a motor with the same characteristics, however, the resistive torque CR is much lower. When connected to Y the motor accelerates the load up to 95% of the rated speed. When the starter is switched to Δ , the current, which was approximately 50%, increases to 170%, i. e., practically equal to the starting current in Y. In this case, the star-delta connection has some advantages, because if it was D.O.L. connected, it would absorb 600% of the rated current. The Star-Delta starter can only be used for starting machines at no loads. In the case of starting at no load, the load can only be applied after the motor has reached 90% of its rated speed. The commutation point from star to delta connection must be determined carefully in order to ensure that this starting method is effectively advantageous in cases where D.O.L starting is not possible. For triple rated voltage motors (220/380/440/760 V, connection must be at 220/380 V or 440/760 V, depending on the power supply.

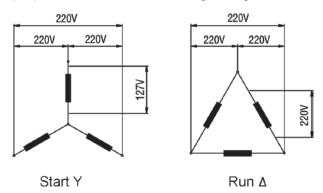


Figure 3.11

- current in delta
- current in star
- č torque in delta
- Ć - torque in star
- C/C_n ratio between motor torque and rated torque
- ratio between motor current and rated current I/I_n

C, resistive toraue

Figure 3.12 shows how to connect a motor for Star-Delta starting on a 220 V power supply and indicates that voltage per phase is reduced to 127 V during starting.

3.4.3 Compensating Switch (Autotransformer)

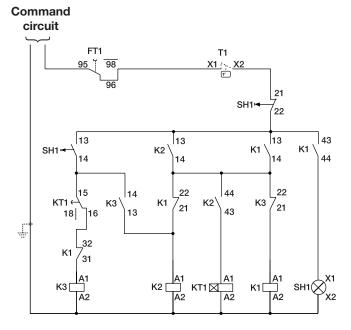


Figure 3.13 - Control circuit - starting by compensating switch

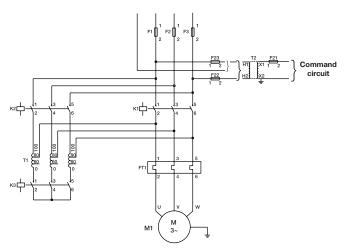


Figure 3.14 - Power circuit - starting by compensating switch

F1. F2. F3 - Power fuses (F1. F2. F3 e F4. F5. F6) - Power fuses F21. F22. F23 - Control fuses T1 - Control transformer K1. K2. K3 e K4 - Contactors 1FT1 e 2FT1 - Overload relay SH1 - Control button KT1 - Time relay M1 - Motor

Optional accessories

- Phase fault relay

- Minimum/maximum voltage relay
- Ammeter
- Voltmeter
- Ohmmeter

The compensating switch can be used to start motors under load. This switch reduces the staring current preventing overload on the circuit, however ensures that the motor has sufficient torque to star and accelerate the load. The voltage on the compensating switch is reduced by the autotransformer which has taps of 50%, 65% and 80% of the rated voltage.

For motor starting with voltage below the rated one, starting current and torgue must be multiplied by factor K, (current multiplying factor) and K_a (torque multiplying factors) obtained on the chart of figure 3.15.

Example: for 85% of the rated voltage

$$(\frac{l_p}{l_n})$$
 85% = K₁. $(\frac{l_p}{l_n})$ 100% = 0.8 $(\frac{l_p}{l_n})$ 100%

$$(\frac{C_{p}}{C_{n}})$$
 85% = K_{2} . $(\frac{C_{p}}{C_{n}})$ 100% = 0.66 $(\frac{C_{p}}{C_{n}})$ 100%

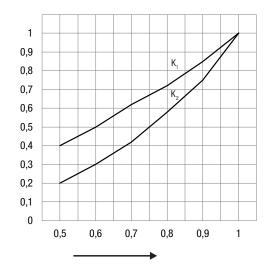


Figure 3.15 - K, and K, reduction factors as function of the motor and power supply U /U ratios

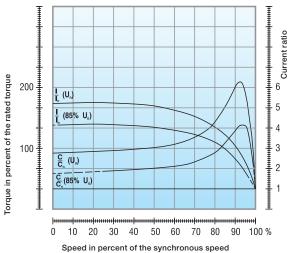


Figure 3.16 - Example performance characteristics of a 425 HP, VI pole motor when starting with 85% of the rated voltage.

3.4.4 Comparing Star-Delta Starters and "Automatic" Autotransformers

1) Star-delta (automatic)

Advantages

- a) Star-Delta starters are widely used due to their relatively low price.
- b) There are no limits to the number of times they can be operated.
- c) The components require very little space.
- d) The starting current is reduced to approximately one-third.

Disadvantages

- a) The starter can only be applied to motors where the six leads or terminals can be accessed.
- b) The supply voltage must be the same as the rated motor voltage for Delta connection.
- c) Because the starting current is reduced to approximately one-third of the rated current, the starting torque is also reduced to one-third.
- d) If the motor does not reach at least 90% of its rated speed at the time of switching from Star to Delta the current peak will be as high as in a D.O.L. start, thus causing harmful effects to the contacts of the contactors and the connection system brings no advantage to the electrical system.

2) Auto-transformer (automatic)

Advantages:

- a) On the 65% tapping the line current is approximately equal tp that of a Star-Delta starter, however, at the time of switching from reduced voltage to the full supply voltage, the motor is not disconnected so that the second peak is very much reduced since the transformer is converted into reactance for a short time.
- b) It is possible to vary the tapping from 65% to 80% or even up to 90% of the supply voltage in order to ensure that the motor starts satisfactorily.

Disadvantages:

- a) One of its great disadvantages is the limitation of its operation frequency. It is always necessary to know the operation frequency in order to determine a suitably rated auto-transformer.
- b) The compensating switch is much more expensive than a Star-Delta starter due to the auto-transformer.
- c) Due to the size of the auto-transformer starter, much larger control panels are required which increases the price.

3.4.5 Series-Parallel Starting

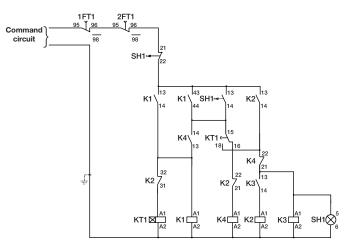


Figure 3.17 - Control circuit - series-parallel starter

Figure 3.18 - Power circuit - series-parallel starter

- F1. F2. F3 Power fuses F21. F22. F23 - Control fuses T2 - Control transformer K1. K2. K3 - Contactors FT1 - Overload relav T1 - Autotransformer SH1 - Command button KT1 - Time relay
- M1 Motor

Optional accessories

- Phase fault relay
- Minimum/maximum voltage relay
- Ammeter
- Voltmeter - Ohmmeter

The series-parallel connection requires the motor to be designed for two rated voltages, the lowest one is equal to the power supply voltage and the other is two times higher.

For this starting method the most common voltage is 220/440 V, i. e., on starting the motor is series connected until it reaches its rated speed and then it is switched to parallel connection.

3.4.6 Electronic Start (Soft-Starter)

New discoveries in electronics have allowed the creation of the solid state starters consisting of a set of pairs of thyristors (SCR) or (combination of thyristors / diodes), one on each motor power terminals.

The trigger angle of each pair of thyristors is controlled electronically for applying a variable voltage to the motor terminals during the "acceleration". At the end of the start period, adjustable typically between 2 and 30 seconds, the voltage reaches its rated value with a smooth acceleration ramp instead of being submitted to increments or sudden peaks. Applying such starting method the starting current (line current) remains close to the rated current with only smooth variation. Besides the advantage of the voltage (current) control during the start, the electronic switch also has the advantage of not having movable parts or parts that generate electric arcs as the mechanical switches. This is one of the strengths of the electronic switches, since their lifetime becomes longer.

Motor voltage	Operating voltage	Star- Delta Starter	Autotransformer Starter	Series- Parallel Starter	Soft-Starter
220/380 V	220 V 380 V	Yes Não	Yes Yes	No No	Yes Yes
220/440 V	40 V 220 V No 440 V No		Yes Yes	Yes No	Yes Yes
380/660 V	380 V	Yes	Yes	No	Yes
220/380/ 440 V	220 V 380 V 440 V	Yes No Yes	Yes Yes Yes	Yes Yes No	Yes Yes Yes

Table 3.1 - Starting methods x Motors

3.5 Direction of Rotation of Three-Phase Induction Motors

Depending on the electric connection configuration, a three-phase induction motor can operate at any direction of rotation. The direction of rotation can be reversed by exchanging the position of two of the connecting leads. WEG motors are supplied with bi-directional fans unless only one direction of rotation is informed on the data sheet or on additional nameplates. In general the motor allow the operation at any direction of rotation without affecting the motor cooling. Motors without fan, but ventilated by the own load (the fan is the load) must meet the cooling requirements of the motor, independent of the direction of rotation. In case of doubt, contact WEG

4. Acceleration Characteristics

4.1 Torque

4.1.1 Torque X Speed Curve

Definition

The induction motor has zero torque at synchronous speed. As the load increases, the motor speed will decrease gradually until the torque reaches the maximum value which the motor is capable of developing at normal speed. If the load torque continues to increase, the motor speed will suddenly decrease and may even lock the rotor. By graphically representing the torque variation with the speed for a normal motor, we obtain a curve as shown in Figure 4.1.

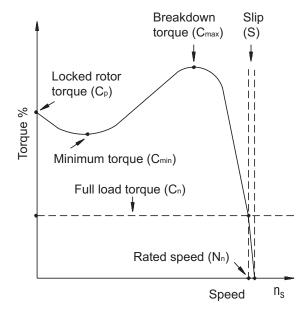


Figure 4.1 - Torque x speed curve

Figure 4.1 highlights and defines some important points. The torque values relative to these points are specified in the standard IEC 60034-1, as shown below:

C_o: <u>basic torque</u> - This is the calculated torque relating to the rated output and synchronous speed.

$$C_{o} (Kgfm) = \frac{716 \cdot P(cv)}{n_{s} (rpm)} = \frac{974 \cdot P(kW)}{n_{s} (rpm)}$$
$$C_{o} (Nm) = \frac{7024 \cdot P(cv)}{n_{s} (rpm)} = \frac{9555 \cdot P(kW)}{n_{s} (rpm)}$$

- C_n: <u>rated torque or full load torque</u> This is the torque developed by the motor at the rated output at rated voltage and frequency.
- C_p: locked rotor torque or starting torque, also called breakaway torque - this is the minimum torque developed by the locked rotor for different angular positions of the rotor at rated voltage and frequency.

This torque can be indicated in Nm or more frequently as percentage of the rated torque.

$$C_{p}(\%) = \frac{C_{p}(Nm)}{C_{n}(Nm)}$$
 . 100

In practice, the locked rotor torque should be as high as possible to enable the rotor to overcome the initial load inertia, and quickly accelerate it, especially when started with reduced voltage. **C**_{min}: **minimum torque or pull up torque:** - This is the smallest torque developed by the motor when accelerating from rest or zero speed to the speed corresponding to maximum torque. In practice this value must not be very low, i.e. the speed torque curve should not have a strong depression during acceleration otherwise starting time is too long, resulting in overheating of the motor, especially in cases of high inertia, or starting on reduced voltage.

C_{máx}: maximum torque or breakdown torque - This is the maximum torque developed by the motor at rated voltage and frequency, without an abrupt drop in speed. In practice maximum torque must be as high as possible for two reasons:

- 1) The motor must be able to easily overcome loading peaks which can occasionally occur with crushers, calandering machines, mixers, etc.
- 2) The motor speed should not oscillate, i. e., the speed should not drop abruptly when momentary and excessive voltage drops occur.

4.1.2 Designs - Minimum Standardized Torque Values

Based on their torque characteristics in relation to the speed and starting current, three-phase squirrel cage induction motors are classified into designs, each one complying with a specific type of load. Defined by IEC 60034-1 Standard, the designs are the following:

Design N

Regular locked rotor torque, regular locked rotor current, low slip. These are the most common motors in the market and are used in applications such as pumps, machine tools fans, etc.

Design H

High locked rotor torque, regular locked rotor current, low slip. The motors with this design are used on applications that require high starting torques such as screens, conveyors, high inertia loads, crushers, etc.

Design D

High locked rotor torque, regular locked rotor current, high slip (above 5%). Used on applications such as eccentric presses and similar machines that have periodic load peaks. These motors are also used on elevators and loads that require high starting torque and limited locked rotor current. Figure 4.2 shows the torque curves x speed of the different designs.

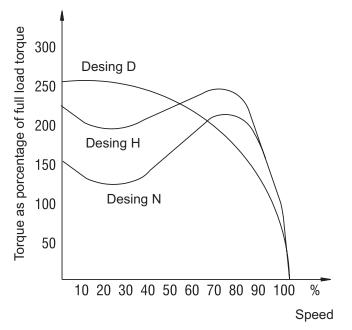


Figure 4.2 - Torque x speed curves for the different designs

Design NY

This design includes motors similar to those of N design; however, they are designed for star-delta starting. For these motors at star connection, the minimum torque values with locked rotor and the pull-in torque values are equal to 25% of the values indicated for Design N motors.

Design HY

This design includes motors similar to those of design N; however, they are designed for star-delta starting. For these motors at star connection, the minimum torque values with locked rotor and the pull-in torque values are equal to 25% of the values indicated for H Design motors.

The minimum torque values required for design N and design H motors, as specified in IEC 60034-1 standard, are shown in tables 4.1and 4.2.

For 4, 6 and 8-pole design D motors and rated power of 150 HP and below, IEC 60034 -1 states that: the locked rotor torque (C_p) shall not be lower than 2.75 of the motor rated torque (C_n). Pull-up torque (C_{min}) and breakdown torque (C_{max}) are not regulated by this standard.

IEC 60034-1 does not specify minimum torque values required for 2-poles, design H and design D motors.

Wen

Number of Poles			2			4			6			8		
Rated Pov	Rated Power Range		C _{min} /C	C _{max} /C _n	C _p /C _n	C _{min} /C _n	C _{max} /C _n	C _p /C _n	C _{min} /C	C _{max} /C _n	C _p /C _n	C _{min} /C	C _{max} /C _n	
kW	CV							ри						
$> 0,36 \le 0,63$	$> 0,5 \le 0,86$	1,9	1,3	2,0	2,0	1,4	2,0	1,7	1,2	1,7	1,5	1,1	1,6	
> 0,63 ≤ 1,0	> 0,86 ≤ 1,4	1,8	1,2	2,0	1,9	1,3	2,0	1,7	1,2	1,8	1,5	1,1	1,7	
> 1,0 ≤ 1,6	> 1,4 ≤ 2,2	1,8	1,2	2,0	1,9	1,3	2,0	1,6	1,1	1,9	1,4	1,0	1,8	
> 1,6 ≤ 2,5	> 2,2 ≤ 3,4	1,7	1,1	2,0	1,8	1,2	2,0	1,6	1,1	1,9	1,4	1,0	1,8	
> 2,5 ≤ 4,0	> 3,4 ≤ 5,4	1,6	1,1	2,0	1,7	1,2	2,0	1,5	1,1	1,9	1,3	1,0	1,8	
$>4,0 \le 6,3$	> 5,4 < 8,6	1,5	1,0	2,0	1,6	1,1	2,0	1,5	1,1	1,9	1,3	1,0	1,8	
> 6,3 ≤ 10	> 8,6 ≤ 14	1,5	1,0	2,0	1,6	1,1	2,0	1,5	1,1	1,8	1,3	1,0	1,7	
> 10 < 16	> 14 ≤ 22	1,4	1,0	2,0	1,5	1,1	2,0	1,4	1,0	1,8	1,2	0,9	1,7	
> 16 ≤ 25	> 22 ≤ 34	1,3	0,9	1,9	1,4	1,0	1,9	1,4	1,0	1,8	1,2	0,9	1,7	
> 25 ≤ 40	> 34 ≤ 54	1,2	0,9	1,9	1,3	1,0	1,9	1,3	1,0	1,8	1,2	0,9	1,7	
> 40 < 63	> 54 < 86	1,1	0,8	1,8	1,2	0,9	1,8	1,2	0,9	1,7	1,1	0,8	1,7	
> 63 < 100	>86 ≤136	1,0	0,7	1,8	1,1	0,8	1,8	1,1	0,8	1,7	1,0	0,7	1,6	
> 100 ≤ 160	> 136 < 217	0,9	0,7	1,7	1,0	0,8	1,7	1,0	0,8	1,7	0,9	0,7	1,6	
> 160 ≤ 250	$> 217 \leq 340$	0,8	0,6	1,7	0,9	0,7	1,7	0,9	0,7	1,6	0,9	0,7	1,6	
$> 250 \leq 400$	$>340 \leq 543$	0,75	0,6	1,6	0,75	0,6	1,6	0,75	0,6	1,6	0,75	0,6	1,6	
$>400 \le 630$	> 543 < 856	0,65	0,5	1,6	0,65	0,5	1,6	0,65	0,5	1,6	0,65	0,5	1,6	

Table 4.1 - Three-phase motors - Locked rotor torque (C_p), pull-in torque (C_{min}) and breakdown torque (C_{max}), for design N motors, relating to the rated torque (C_n).

Number of poles Rated Power Range			4		6			8		
		C _p /C _n	C _{min} /C _n	C _{max} /C _n	C _p /C _n	C _{min} /C _n	C _{max} /C _n	C _p /C _n	C _{min} /C _n	C _{max} /C _n
kW	CV						pu			
> 0,4 < 0,63	$> 0,54 \le 0,86$	3,0	2,1	2,1	2,55	1,8	1,9	2,25	1,65	1,9
> 0,63 ≤ 1,0	> 0,86 ≤ 1,4	2,85	1,95	2,0	2,55	1,8	1,9	2,25	1,65	1,9
> 1,0 < 1,6	> 1,4 ≤ 2,2	2,85	1,95	2,0	2,4	1,65	1,9	2,1	1,5	1,9
> 1,6 < 2,5	> 2,2 <u><</u> 3,4	2,7	1,8	2,0	2,4	1,65	1,9	2,1	1,5	1,9
> 2,5 < 4,0	> 3,4 ≤ 5,4	2,55	1,8	2,0	2,25	1,65	1,9	2,0	1,5	1,9
> 4,0 <pre> < 6,3</pre>	> 5,4 ≤ 8,6	2,4	1,65	2,0	2,25	1,65	1,9	2,0	1,5	1,9
> 6,3 < 10	> 8,6 ≤ 14	2,4	1,65	2,0	2,25	1,65	1,9	2,0	1,5	1,9
> 10 < 16	> 14 < 22	2,25	1,65	2,0	2,1	1,5	1,9	2,0	1,4	1,9
> 16 < 25	> 22 ≤ 34	2,1	1,5	1,9	2,1	1,5	1,9	2,0	1,4	1,9
$> 25 \le 40$	> 34 < 54	2,0	1,5	1,9	2,0	1,5	1,9	2,0	1,4	1,9
> 40 < 63	> 54 ≤ 86	2,0	1,4	1,9	2,0	1,4	1,9	2,0	1,4	1,9
> 63 < 100	>86 ≤ 140	2,0	1,4	1,9	2,0	1,4	1,9	2,0	1,4	1,9
> 100 <u><</u> 160	> 140 <u><</u> 220	2,0	1,4	1,9	2,0	1,4	1,9	2,0	1,4	1,9

Table 4.2 - Three-phase motors - Locked rotor torque (C_p), pull-in torque (C_{min}) and breakdown torque (C_{max}), for design H motors, relating to the rated torque (C_n).

Notes: a) The locked rotor torques (C_p/C_n) are 1.5 times the corresponding values of design N; however, not below 2.0; b) The pull-up torques (C_{min}/C_n) are1.5 times the corresponding values of design N; however, not below 1.4; c) The breakdown torques (C_{max}/C_n) are the same as corresponding values of design N; however, not below 1.9 or the corresponding values of pull-up torques (C_{max}/C_n) are the same as corresponding values of design N; however, not below 1.9 or the corresponding values of pull-up torques (C_{max}/C_n) are the same as corresponding values of design N; however, not below 1.9 or the corresponding values of pull-up torques (C_{max}/C_n) are the same as corresponding values of design N; however, not below 1.9 or the corresponding values of pull-up torques (C_{max}/C_n) are the same as corresponding values of design N; however, not below 1.9 or the corresponding values of pull-up torques (C_{max}/C_n) are the same as corresponding values of design N; however, not below 1.9 or the corresponding values of pull-up torques (C_{max}/C_n) are the same as corresponding values of design N; however, not below 1.9 or the corresponding values of pull-up torques (C_{max}/C_n) are the same as corresponding values of design N; however, not below 1.9 or the corresponding values of pull-up torques (C_{max}/C_n) are the same as corresponding values of design N; however, not below 1.9 or the corresponding values of pull-up torques (C_{max}/C_n) are the same as corresponding values of design N; however, not below 1.9 or the corresponding values of pull-up torques (C_{max}/C_n) are the same as corresponding values of pull-up torques (C_{max}/C_n) are the same as corresponding values of pull-up torques (C_{max}/C_n) are the same as corresponding values of pull-up torques (C_{max}/C_n) are the same as corresponding values (C_{max}/C_n) are the same as corresponding values (C_{max}/C_n) are the same as corresponding values (C_{max}/C_n) are the same as corresponding va torques (C_{min} / C_n).

4.1.3 Characteristics of WEG Motors

Although WEG states that their motors usually comply with Design N, in many cases their typical actual torque values far exceed the minimum required by the standard. In most cases the values even exceed the minimum requirements of Design H. This means a very high speed-torque curve, bringing the following benefits:

- 1) Quick acceleration under heavy starting conditions, e.g. for piston pumps, loaded conveyors, high inertia loads, compressors with open valves, etc.
- 2) Quick responsiveness for special supplies such as those mentioned since standard motors are always readily available from stock, with price benefits and quick delivery.
- 3) The possibility of using reduced voltage starting methods, e.g. Star-Delta Starters, in normal cases, without affecting perfect load acceleration.
- 4) Due to the high value of the breakdown torque,

momentary load peaks and temporary voltage drops are accepted without any sudden speed loss. This is a fundamental requirement for the performance of machines that are subjected to heavy load peaks, such as crushers, calender machines, etc.

4.2 Load Inertia

The driven load inertia is one of the most important characteristics to be checked during the acceleration time to ensure that the motor will be able to drive the load within the ambient requirements or the thermal capabilities of the insulation materials.

Inertia is the way how we measure the resistance of an object to change its rotation movement around a shaft. It also depends on the shaft around which it is rotating, the shape of the object and the way its mass is distributed. The unit of the inertia moment is given by kgm².

The total inertia of the system is given by the load inertia plus motor inertia ($J_t = J_c + J_m$).

In cases where the machine has "different speed than the motor" (ex.: belt/pulley assembly or gearboxes), inertia has to be considered for the motor rated speed as indicated below:

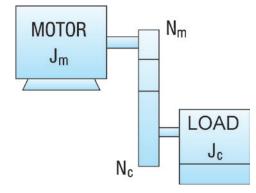


Figure 4.3 - Inertia at different speeds

$$J_{ce} = J_{c} \left(\frac{N_{c}}{N_{m}} \right)^{2} (kgm^{2})$$

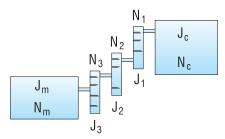


Figure 4.4 - Inertia at different speeds

$$J_{ce} = J_{c} \left(\frac{N_{c}}{N_{m}}\right)^{2} + J_{1} \left(\frac{N_{1}}{N_{m}}\right)^{2} + J_{2} \left(\frac{N_{2}}{N_{m}}\right)^{2} + J_{3} \left(\frac{N_{3}}{N_{m}}\right)^{2}$$

where: J_{ce} - Load inertia related to the motor shaft J_c - Load inertia N_c - Load speed N_m - Motor rated speed

$$J_t = J_m + J_{ce}$$

The total inertia of the load is essential for determining the acceleration time.

4.3 Acceleration Time

In order to check if the motor is suitable to drive the load, or when designing the installation, starting or protection system, the acceleration time must be known (from the moment the motor starts and accelerates up to the rated speed). The starting time can be determined approximately by the average acceleration torque.

$$t_{a} = \frac{2 \pi . rps . J_{t}}{C_{a}} = \frac{2 \pi . rps . (J_{m} + J_{ce})}{(C_{mmed} - C_{rmed})}$$

acceleration time in seconds

- total load inertia in kgm²

rps - rated speed in revolutions per second

motor average acceleration torque in Nm.
 load average resistive torque related to the motor shaft in Nm.

C_{mmed} - motor average G_{mmed} - load average J_m - Motor inertia J_{ce} - Load inertia C_o - Average acco

- Load inertia related to the motor shaft

- Average acceleration torque

The average acceleration torque can be obtained from the difference of motor torque and the load torque. It should be calculated for each rotation interval (the sum of the intervals would give the total acceleration time). In practical terms, it is enough to calculate graphically the average torque, i.e., the difference between motor average torque and load average torque. This average can be obtained graphically, by ensuring that the sum as the areas A_1 and A_2 is the same of area A_3 and that the area B_1 is the same as the area B_2 (see figure 4.5).

Figure 4.5 - Graphical determination of the average acceleration torque

```
Rated torque
```

- Motor torque
- $C_n C_r C_r C_a N_a$ = Load torque
- Average acceleration torque =
- Rated speed

4.4 Duty Cycles

Due to high starting currents on electric induction motors, the time required to accelerate high inertia loads will result in a sudden motor temperature rise. If the interval between successive starts is very short, the motor winding can experience some overheating that will cause some damage or reduce their lifetime. IEC 60034-1 Standard establishes a minimum number of starts (S1) that the motors should withstand in the following conditions:

- a) Two consecutive starts: first start with the motor in cold state, i.e., with the winding at ambient temperature and the second start right after, but with de-energized motor and at rest.
- b) One hot start, i.e., with the winding at running temperature.

The first condition simulates the case when the first start fails, for example, the protection system trips, allowing a second start right after. The second condition simulates the case of an accidental motor shutdown during normal operation, for example, due to a power supply fault, allowing to start the motor again right after the power supply is re-established. As the motor temperature rise depends on the inertia of the driven load, the standard establishes the maximum load inertia to which the motors should withstand in order to comply with the conditions above. Table 4.3 shows the inertia values for 2, 4, 6 and 8-pole motors.

Rated Power		Number of Poles						
naleu	rowei	2	4	6	8			
kW	CV	kgm²						
0,4	0,54	0,018	0,099	0,273	0,561			
0,63	0,86	0,026	0,149	0,411	0,845			
1,0	1,4	0,040	0,226	0,624	1,28			
1,6	2,2	0,061	0,345	0,952	1,95			
2,5	3,4	0,091	0,516	1,42	2,92			
4,0	5,4	0,139	0,788	2,17	4,46			
6,3	8,6	0,210	1,19	3,27	6,71			
10	14	0,318	1,80	4,95	10,2			
18	22	0,485	2,74	7,56	15,5			
25	34	0,725	4,10	11,3	23,2			
40	54	1,11	6,26	17,2	35,4			
63	86	1,67	9,42	26,0	53,3			
100	140	2,52	14,3	39,3	80,8			
160	220	3,85	21,8	60,1	123			
250	340	5,76	32,6	89,7	184			
400	540	8,79	49,7	137	281			
630	860	13,2	74,8	206	423			

Table 4.3 - Moment of inertia (J)

a) The values are given as a function of the mass-radius squared. They were calculated by the following formula:

where: P - rated Power in kW p - number of pole pairs

- b) For intermediate rated power ratings the external inertia moment should be calculated by the formula above. For loads with higher inertia than the reference values given in table 4.3, which can happen mainly in higher rated power ratings or for the determination of the maximum number of starts per hour, our Application Engineering Department should be contacted informing the following application data:
 - Power required by the load. If the duty is intermittent, see the last item: "Duty cycle".
 - Speed of the driven machine.
 - Transmission: direct, flat belts, V-belts, chain, etc.
 - Transmission ratio with dimensional sketches and distances between pulleys, if transmission is realized by the pulley.
 - Abnormal radial loads applied to the shaft end: belt traction in special transmissions, heavy parts coupled to the shaft end, etc.
 - High axial loads applied to the shaft end: transmission by helical gears, hydraulic thrusts of pumps, heavy rotating parts mounted vertically, etc.
 - Mounting different from B3D, indicate mounting code of the application.
 - Required starting torque and breakdown torque
 - Description of the driven equipment and operation.
 - Moment of inertia or GD2 of the movable parts of the equipment and the related speed.
 - Duty cycle, if not continuous duty, provide detailed description of the operation cycles and specify:
 - a) Required power and the duration of each load period; b) Duration of the no-load periods (motor at no-load or
 - de-eneraized): c) Reversals of the direction of rotation;
 - d) Counter current braking.

The motors must have their number of starts per hour limited according to their duty indicated on the nameplate and/or as agreed for the design.

Excessive starts can cause overheating and consequent burning of the electric motor.

In case of doubt, please contact WEG.

4.5 Locked Rotor Current 4.5.1 Standardized Maximum Values

The maximum limits for the locked rotor current, as a function of the rated motor output are valid for any number o poles, are shown in Table 4.4, indicated in terms of apparent power absorbed with locked rotor relating to the rated output, kVA/HP or kVA/kW.

kVA/cv = -

Rated power

$$kVA/cv = \frac{\sqrt{3} I_{p} . U}{P(cv) . 1000}$$

 $kVA/kW = \frac{\sqrt{3} I_{p} . U}{P(kW) . 1000}$

where: I_o - Locked rotor current or starting current

U - Rated voltage (V)

P - Rated power (HP or kW)

Power	range	S _p / P _n				
kW	HP	kVA/kW	kVA/cv			
$> 0.37 \le 6.3$	$> 0,5 \le 8,6$	13	9,6			
> 6,3 ≤ 25	> 8,6 ≤ 34	12	8,8			
> 25 < 63	> 34 <u><</u> 86	11	8,1			
> 63 ≤ 630	> 86 ≤ 856	10	7,4			

Table 4.4 - Maximum values of the locked rotor apparent Power (S_p / P_n), expressed as per the unit value of the rated output (P_n)

Note: to obtain the ratio $l_{\rm p}/\,l_{\rm n}$, multiply kVA/kW by the performance product and by the Power factor at full load.

 $I_p = Locked rotor current;$

 $\int_{n} = Rated current$

5. Speed Regulation of Asynchronous Motors

The relationship between speed, frequency, number of poles and slip is given by:

$$n = \frac{2}{(2p)} \cdot f \cdot 60 \cdot (1 - s)$$

where : n = rpm f = frequency (Hz) 2p = number of poles s = slip

The formula shows that for the speed regulation of asynchronous motors, we can change the following parameters:

a) 2p = number of poles b) s = slip

 \dot{c} f = frequency (Hz)

5.1 Changing the Number of Poles

There are three ways to change the number of poles of an asynchronous motor, as follows:

separated stator winding;

one winding with pole commutation;

combination of the two options above.

In all these cases, the speed regulation will be smooth, without losses, but frame size will be larger than for a single-speed motor.

5.1.1 Two Speed Motors with Independent Winding

This type of motor has the advantage of combining winding with any number of poles; however, it is limited by core dimensioning (stator/rotor) and by the frame size that is usually far greater than the frame of a single-speed motor.

5.1.2 Dahlander

Two-speed motors with commutating pole winding is the most used system, also called "Dahlander connection." This connection provides a ratio of a number poles ratio of 1:2 with a consequent speed ratio 2:1.

It can be connected as follows (Figure 5.1):

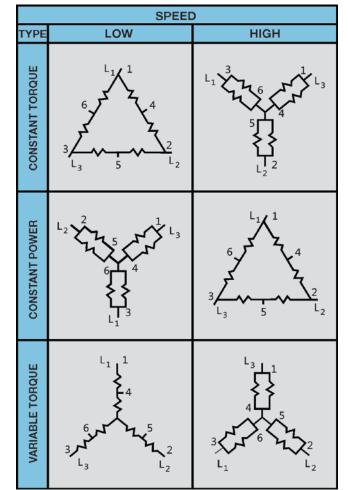


Figure 5.1 - Summary of the Dahlander connection

Constant torque

Torque is constant on both speeds and power ratio is 0.63:1. In this case, the motor is D/YY connected.

Example:

0.63/1HP motor - 4/2 poles - D/YY.

This connection is suitable for applications where the load torque curve remains constant with the speed variation.

Constant power

In this case, the torque ratio is 2:1 and horsepower remains constant. The motor is YY/D connected. Example: 10/10 HP - 4/2 poles - YY/Δ .

Variable torque

In this case, the power ratio will be approximately 1:4. It is applied to loads such as pumps and fans. The connection, in this case, is Y/YY.

Example: 1/4 HP - 4/2 poles - Y/YY.

5.1.3 Motors with Two or More Speeds

It is possible to combine a Dahlander winding with a single winding or more. However, this type of motor is not usual and is used only for special applications.

5.2 Slip Variation

In this case, the rotating field speed is maintained constant, and the rotor speed is changed according to

the conditions required by the load, which can be:

a) rotor resistance variation

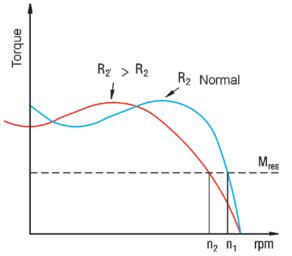
b) stator voltage variation

c) variation of both simultaneously.

These variations are achieved by increasing rotor losses which limit the use of this system.

5.2.1 Rotor Resistance Variation

This method is used for slip ring motors and is based on the following equation:


$$s = \frac{p_{j2}}{\omega_{o} \cdot T} = \frac{3 \cdot R_{2} \cdot l^{2}_{2}}{\omega_{o} \cdot T}$$

where: $p_{j2} = Rotor \, losses (W)$

 $\omega_{0} = Synchronous speed in rd/s$ $T_{0} = Rotor torque$ $R_{2} = Rotor resistance (Ohms)$ $I_{2} = Rotor current (A)$

$$s^2 = slip$$

The connection of an external resistance to the rotor increases the motor slip (s) and results in speed variation. The figure 5.2 shows the effect of the increase of R2.

5.2.2 Stator Voltage Variation

This is not a usual method since it also generates rotor losses and the speed variation range is small.

5.3 Frequency Inverters

For further information about the use of frequency inverters for speed control, see chapter "*Application of induction motors fed by frequency inverters*".

6. Brake Motor

The brake motor consists of an induction motor coupled to a single-disc brake, forming an integral, compact unit. The induction motor is a totally enclosed fan cooled machine with the same mechanical and electrical performance of WEG general purpose motors.

The brake is built with few movable parts which give long life with reduced maintenance. The two faces of the brake pads create a large contact area, requiring only little pressure during the braking process, which reduces the brake heating and the wear is minimal. Besides that, the brake is cooled by the motor cooling system. The electromagnet drive coil, protected with epoxy resin, can be operated continuously with voltages varying 10% above and below the rated voltage.

The electromagnet drive coil is DC powered, supplied by a bridge rectifier made of silicon diodes and varistors, that suppress undesirable voltage spikes and allow a fast current shutdown. The DC power supply provides a faster and smoother brake operation.

The typical applications for brake motors:

- Machine-tools
- Looms
- Packing machines
- Conveyors
- Bottle washing and filling machines
- Winding machines
- Bending machines
- Hoists
- Cranes
- Lifts
- Roll adjustment of rolling machines
- Graphic machines

In general terms, brake motors are used on equipment requiring quick stops based on safety, positioning and timesaving factors.

6.1 Brake Operation

When the motor is disconnected from the power supply, the control also switches off the coil current and the electromagnet stops operating. The pressure springs force the armature towards the motor non-drive-end shield. Fitted in the braking disc, the braking pads are compressed between the two friction surfaces, the armature, and the end shield braking the motor until it stops. When the motor is switched on, the coil is powered and the armature is pulled against the electromagnet frame by eliminating the spring force. Once they are free, the braking pads move axially in their seating, and they remain out of the friction area. Now the braking process is ended and allows starting the motor freely. As optional, WEG can supply the motors with brake lining.

6.2 Connection Diagram

The WEG brake motor allows 3 types of connection diagrams supplying slow, medium and quick braking.

a) Slow braking

The power supply of the brake coil bridge rectifier is applied directly from the motor terminals, without interruption, as shown below:

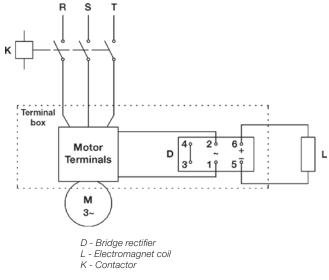


Figure 6.1 - Connection diagram for slow braking

b) Medium braking

In this case, a contact for interruption of the bridge rectifier supply current in the AC circuit is interconnected. It is essential that this is a NO auxiliary contact (S1) of the contactor itself or of the motor magnetic switch in order to allow switching on and off of the brake and motor simultaneously.

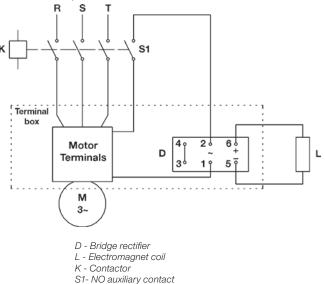
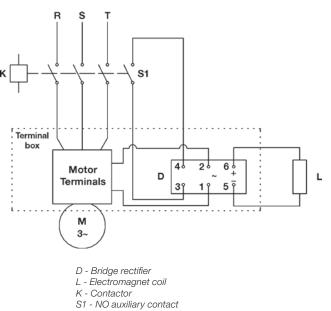



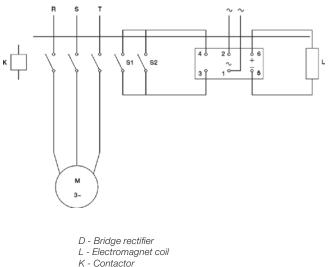
Figure 6.2 - Connection diagram for medium braking

c) Fast braking

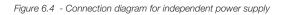
A contact for interruption is directly connected to one of the coil supply cables in the DC circuit. It is essential that this is a NO auxiliary contact of the contactor itself or a magnetic switch of the motor.

6.3 Brake Coil Power Supply

The power supply of the bridge rectifier with AC-current can be obtained from an independent source or from the motor terminals. This power supply may be in 110/220 V, 440 V or 575 V, according to the characteristics of the bridge rectifier/ brake coil set.


The brake coil can also be supplied for 24 V DC, but in this case, the power supply should be provided through an independent source (direct current), eliminating the use of bridge rectifier (RB).

Through motor terminals


- a) Motor 220/380 V: connect motor terminal 1 and 2 of the RB (220 V AC) between the terminals 1 and 4 of the motor.
- b) Motor 380/660 V: connect motor terminal 1 and 2 of the RB (220 V AC) between the terminal 2 and the neutral.
- c) Motor 220/380/440/760 V: connect the motor terminals 1 and 2 of the RB (220 V AC) between the terminals 1 and 4 of the motor.
- d) Motor with 3 leads (single voltage): connect the terminals 1 and 2 of the RB between the 1 and 2 of the motor (if the RB has the Same voltage of the motor).
- e) Two-speed motor 220 V (RB 220 V AC):
- 1. High speed: connect between the motor terminals 4 and 6.
- Low speed: connect between the motor terminals 1 and 2. Motor 440 V: connect the terminals of the rectifier bridge (440 V AC) to the motor terminals.

Independent power supply (AC):

For motors of other voltages, connect the terminals of the rectifier bridge to the independent 220 V power supply; however, always with the simultaneous interruption when the motor power supply is switched off. With independent power supply, it is possible to electrically release the brake, as shown in figure 6.4.

- S1 NO auxiliary contact
- S2 Electric release switch

6.4 Brake Torque

It is possible to obtain a smoother motor stop by reducing the braking torque value. This is achieved by removing some brake pressure springs.

Important!

The springs must be removed in such a way that the remaining ones stay symmetrically arranged, avoiding in this way any friction even after operating the motor and thus avoid uneven wear of the braking pads.

6.5 Air Gap Adjustment

WEG brake motors are supplied with an initial factory set air gap, that is, the gap between the armature and the frame with the energized brake are pre-adjusted at the factory to the minimum value as indicated in Table 6.1.

As they are simple construction machines, brake motors require low maintenance. Only a periodical air gap adjustment is required. It is recommended to clean internally the brake motor in cases of penetration of water, dust, etc. or at the time motor when the periodical maintenance is carried out.

Frame size	Initial air gap (mm)	Maximum air gap (mm)
71	0,2 - 0,3	0,6
80	0,2 - 0,3	0,6
90S - 60L	0,2 - 0,3	0,6
100L	0,2 - 0,3	0,6
112M	0,2 - 0,3	0,6
132S - 132M	0,3 - 0,4	0,8
160M - 160L	0,3 - 0,4	0,8

Table 6.1

Due to the natural wear of the braking pads, the size of the air gap gradually increases without affecting the performance of the brake until it reaches the maximum value shown in Table 6.1. To adjust the air gap to its initial value, proceed as follows:

- a) Unfasten the bolts and remove the fan cover;
- b) Remove the seal ring;
- c) Measure the air gap at three points, near the adjustment screws, using a set of feeler gauges;
- d) If the gap width is equal to or greater than the maximum indicated dimension, or if the three readings are not the same, proceed the adjustment as follows:
 - 1. loosen the lock nuts and the adjustment screws;
 - 2. adjust the air gap to the initial value indicated in Table 6 .1 tightening by equally the three adjustment screws. The value of the air gap must be uniform at the three measured points, and must be such that the feeler gauge corresponding to the minimum gap, moves freely and the feeler gauge corresponding to the maximum gap cannot be inserted into the measured points;
 - 3. tighten the locking bolts screws until the ends touch the motor end shield. Do not overtighten them;

- 4. Tighten the lock nuts;
- 5. Re-check the air gap to ensure the measurements are as per Item 2 above;
- 6. Remount the seal ring;
- 7. Remount the fan cover and fasten it with its fixing bolts.

The interval between periodical adjustments of the air gap, i.e., the number of braking cycles until brake pads wear to their maximum allowed value depends on the load, the frequency of operations, and the cleanness of the working environment, etc. The ideal interval can only be determined by closely following up the performance of the brake motor during the first months of operation under actual working conditions. The wear of the brake pads also depends on the moment of inertia of the load.

WEG is also able to supply other brake options for more severe applications (e.g., cranes, tractors, gearboxes, etc.). In case of doubt, please contact WEG.

7. Operating Characteristics

7.1.1 Winding Heating Up Losses

The effective or useful power output supplied by the motor at the shaft end is lower than the power input absorbed by the motor from the power supply, i. e., the motor efficiency is always below 100%. The difference between input and output represents the losses that are transformed into heat. This heat warms up the winding and therefore must be removed from the motor to avoid excessive temperature rise. This heat removal must be ensured for all types of motors. In the automobile engine, for example, the heat generated by internal losses has to be removed from the engine block by water flow through the radiator or by the fan, in the case of air-cooled engines.

Heat dissipation

The heat generated by internal losses is dissipated to the ambient air through the external surface of the frame. In totally enclosed motors this dissipation is usually aided by a shaft mounted fan. Good heat dissipation depends on:

- Efficiency of the ventilating system;
- Total heat dissipation area of the frame;
- Temperature difference between the external surface of the frame and the ambient air ($t_{ext} t_a$).
- a) A well-designed ventilation system, as well as having an efficient fan capable of driving a large volume of air, must direct this air over the entire circumference of the frame to achieve the required heat exchange.
 A large volume of air is absolutely useless if it is allowed to spread out without dissipating the heat from the motor.
- b) The dissipation area must be as large as possible. However, a motor with a very large frame requires a very large cooling area and consequently will become too expensive, too heavy, and requires too much space for installation. To obtain the largest possible area while at the same time keeping the size and weight to a minimum (an economic requirement), cooling fins are cast around the frame.

c) An efficient cooling system is one that is capable of dissipating the largest possible amount of heat through the smallest dissipation area. Therefore, it is necessary that the internal drop in temperature, shown in figure 7.1, is minimized. This means that a good heat transfer must take place from the inside to the outer surface of the motor.

As explained, the objective is to reduce the internal drop in temperature (i.e. to improve the heat transfer) in order to obtain the largest possible drop of the outside temperature necessary for good heat dissipation. Internal drop in temperature depends on different factors which are indicated in figure 7.1 where the temperatures of certain important areas are shown and explained as follows:

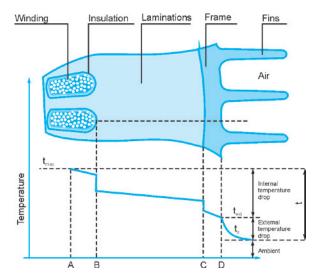


Figure 7.1

- A The winding hottest spot is in the centre of the slots where heat is generated as a result of losses in the conductors.
- AB The drop in temperature is due to the heat transfer from the hottest spot to the outer wires. As the air is a very poor conductor of heat it is very important to prevent voids inside the slots, i.e. the winding must be compact and perfectly impregnated with varnish.
- The drop in temperature through the slot insulation and through the contact of the insulation material with the conductors and by contact with the core lamination.
 By employing modern material far better heat transfer is obtained through the insulation materials. Perfect impregnation improves the contact of the inner side by eliminating voids. Perfect alignment of the lamination improves the contact to the outer side, eliminating layers of air, which have a negative effect on heat transfer.

- BC Drop in temperature by the transmission through the stator lamination material.
- C Drop in temperature by contact between the stator core and the frame. Heat transmission depends on the perfect contact between the parts, good alignment of the laminations, and accuracy in the machining of the frame. Uneven surfaces leave empty spaces, resulting in poor contact and consequently bad heat transmission.
- CD Drop in temperature by the transmission through the frame thickness.

Due to modern design, use of first class material, improved manufacturing processes, and continuous quality control, WEG motors ensure excellent heat transfer properties from the motor inside to the outside thus eliminating "hot spots" in the windings.

Outer surface temperature of the motor

The figure 7.2 shows the recommended places where the outer surface temperature of an electric motor should be checked with calibrated temperature measuring instruments:

Figure 7.2

Important!

Measure also the ambient temperature (at a maximum distance of 1 m from the motor).

7.1.2 Motor Lifetime

As already informed in the Item *"Insulation materials and insulation systems"* its useful lifetime of the motor depends almost exclusively on the life of the winding insulation. The lifetime of a motor is affected by many factors, such as moisture, vibration, corrosive environments, and others. Among all these factors, the most important is the working temperature of the employed insulation materials. An increase from 8 to 10 degrees above the rated temperature class of the insulation system can reduce the motor lifetime by half.

When speaking about decreasing the useful lifetime of the motor, we are not talking about high temperatures where the insulation system burns and the winding are suddenly destroyed. For the insulation lifetime, this means gradual aging of the insulation material which becomes dry, losing its insulation properties until it cannot withstand the applied voltage. This results in a breakdown of the insulation system and a consequent shortcircuit of the winding. Experience shows that the insulation system has practically an unlimited lifetime if the temperature is kept below a certain limit if this temperature limit is exceeded, the insulation lifetime will shorten as the temperature increases. This temperature limit is well below the "burning" temperature of the insulation system and depends on the type of used insulation material.

This temperature limit refers to the hottest spot in the insulation system, but not necessarily to the whole winding. One weak point in the inner part of the winding will be enough to destroy the insulation system.

It is recommended to use temperature sensors as additional protection devices for the electric motor. These protection devices will ensure a longer lifetime and more process reliability.

The alarm and/or shutdown setting should be performed according to the motor temperature class. In case of doubt, contact WEG.

7.1.3 Insulation Classes Insulation class definition

As previously mentioned the temperature limit depends on the type of used material used. In order to comply with the standards the insulation material and insulation systems (each one formed by a combination of several materials) are grouped in INSULATION CLASSES. Each one is defined by the particular temperature limit, i.e. by the highest temperature that the insulation material or system can withstand continuously without affecting its useful life. The insulation classes used for electrical machines and their respective temperature limits are in accordance with IEC 60034-1 are as follows:

Class	А	(105 °C)
Class	Е	(120 °C)
Class	В	(130 °C)
Class	F	(155 °C)
Class	Н	(180 °C)

7.1.4 Winding Temperature Rise Measurement

It would be rather difficult to measure the temperature of the winding with thermometers or thermocouples since the temperature differs from one spot to another and it is impossible to know if the measurement point is near the hottest spot. The most accurate and reliable method for determining the winding temperature is by measuring the variation of the winding resistance as a function of the temperature.

The temperature rise measurement by the resistance method, for copper conductors, is calculated according to the following formula:

$$\Delta t = t_2 - t_a = \frac{R_2 - R_1}{R_1} (235 + t_1) + t_1 - t_a$$

where: $\Delta t = temperature rise;$

- $t_1 =$ winding temperature prior to testing, which should be practically equal to the cooling medium, measured by thermometer;
- t_2 = winding temperature at the conclusion of the test;
- $t_a =$ temperature of the cooling medium at the conclusion of the test;
- $R_1 =$ winding resistance prior to testing;
- R_2 = winding resistance at the end of the test.

7.1.5 Electric Motor Application

The hottest spot temperature in the winding should be maintained below the maximum allowed temperature for the insulation class. The total temperature is the sum of the ambient temperature, plus temperature rise (Δ t), plus the difference existing between the average winding temperature and the hottest spot. Motor standards specify the maximum temperature rise Δ t, so the temperature of the hottest spot remains within the allowable limit based on the following considerations:

- a) Ambient temperature should not exceed 40 °C, as per standard; above this value, working conditions are considered as special operating conditions.
- b) The difference between the average temperature of the winding and the hottest spot does not vary very much from the motor to motor and its value specified by the standard, is 5 °C for Classes A and E, 10 °C for Class B and F and 15 °C for Class H.

Therefore, motor standards specify a maximum allowed ambient temperature, as well as a maximum allowed temperature rise for each insulation class. Thus, the temperature of the hottest spot is indirectly limited. The figures and the allowable temperature composition for the hottest spot are shown in Table 7.1 below:

Insulation Class		Α	Е	В	F	Н
Ambient temperature	٥C	40	40	40	40	40
$\Delta t = temperature rise (resistance method)$	٥C	60	75	80	105	125
Difference between the hottest spot and average temperature	٥C	5	5	10	10	15
Total: temperature of the hottest spot	°C	105	120	130	155	180

Table 7.1 - Temperature composition as a function of the insulation class

For marine motors, all requirements specified by the classification societies must be considered, as shown in Table 7.2.

Classification societies for marine motors	Maximum allowable temperature rise for insulation class, Δt in °C (resistance variation method)					
	Α	E	В	F	Н	
Det Norske Veritas and Germanischer Lloyd	-	-	75	100	120	
American Bureau of Shipping	55	70	75	100	120	
Bureau Veritas	55	70	75	100	120	
Lloyds Register of Shipping	50	65	70	95	110	
Registro Italiano Navale (RINA)	55	70	75	100	120	

Table 7.2 - Temperature correction for marine motors

7.2 Thermal Protection of Electric Motors

Motors used for continuous duty must be protected against overloads by a device integrated to the motor, or an independent device, usually fitted with a thermal relay having rated or setting current equal to or below the value obtained by multiplying the rated motor power supply current (I_n) by the Service Factor (SF), as shown in table below:

Motor Service Factor (SF)	Relay current setting		
1,0 to 1,15	I _n .FS		
≥ 1,15	(I _n . FS) - 5%		

Table 7.3 - Power supply current x Service Factor

The thermal protection is provided by means of

thermoresistances (calibrated resistances), thermistors, thermostats or thermal protectors. The temperature detectors to be used are defined in accordance with the temperature class of the insulation materials used for each type of machine as well as based on customer requirements.

7.2.1 Resistance Temperature Detector (Pt-100)

The temperature detectors operate on the principle that the electrical resistance of a metallic conductor varies as a function of the temperature (generally platinum, nickel or copper conductors). The temperature detectors are fitted with calibrated resistance which varies linearly with the temperature, allowing continuous follow up of motor heating on the controller display, with a high degree of accuracy and response sensitivity.

The same detector can be used for alarm (when the motor is operated above the normal working temperature) and for tripping operation (usually set to the maximum temperature of the insulation class). The resistance of the cables, contacts, etc. can interfere with the measurement so there are different types of configurations that can be carried out to minimize these effects.

- The two-wire configuration is usually satisfactory in places where the cable length to the sensor instrument does not exceed 3.0 m, using cables 20 AWG.
- For the three-wire configuration (commonly used in industry) there will be compensation of the electrical resistance by the third wire.
- For the four-wire configuration (more accurate assembly) there are two connections for each bulb terminal (two cables for voltage and two cables for current), thus obtaining a total balancing of the resistance (this configuration is used where high accuracy is required).

Disadvantage

The high cost of the sensor elements and control circuits.

The temperature for the Pt-100 can be obtained from the formula below or on tables provided by manufacturers.

r - resistance measured in Ohms

7.2.2 Thermistors (PTC and NTC)

Thermistors are temperature sensors consisting of semiconductor materials that vary its resistance very fast when reaching a certain temperature.

PTC - positive temperature coefficient

NTC - negative temperature coefficient

The "PTC" thermistors increase their resistance very fast with temperature increase and some are characterized by the abrupt resistance increase which makes them useful for thermal protection devices. The "NTC" thermistors reduce their resistance when the temperature increases. Thus, these thermal protection devices are used mostly to protect the motor against overheating.

The sudden change in resistance interrupts the current in PTC, activates an output relay, which turns off the main circuit. Thermistors can be used for alarm and tripping purposes. For this purpose, two thermistors are required. They must be series connected, per phase.

The thermistors have reduced size, do not have mechanical wear, and provide a faster response when compared to other temperature sensors. However, they do not allow continuous monitoring of the motor heating process. Thermistors with their electronic circuit controls ensure complete protection against overheating caused by phase-fault, overload, under/ overvoltages or frequent reversals of the direction of rotation or on-off cycles. They have a low cost when compared to the Pt-100. However, they require a relay to control the alarm or operation activation.

Figure 7.4 - External view of a thermistor

Please find in the table below the main PTC types used for electric motors. The table shows the colors of the PTC cables with their respective activation temperature.

Cable colors	Temperature °C
	110
	120
	140
	160
	180

Table 7.4 - Cable colors

WEG also supplies electronic relay RPW that has the specific function to acquire the signal from the PTC and activates its output relay. For further information, please contact WEG.

7.2.3 Bimetal Thermal Protectors - Thermostats

These bimetal thermal protectors (thermostat) with NC silver contacts open when predetermined temperature rise is reached. When the activation temperature of the bimetal thermal protector decreases, the thermostat will return to its original form instantaneously allowing it to close the contacts again. The thermostats can be used on three-phase electric motors for alarm or tripping purposes or both (alarm and tripping).

These thermostats are inserted into the winding heads of different phases and are series connected to the contactor coil where, depending on the required protection and on the customer specifications, three thermostats (one per phase) or six thermostats (two per phase) can be used.

For alarm and tripping operation (two per phase), the alarm thermostats should be suitable for the activation at the high expected motor temperature, while the tripping thermostats should activate at the maximum temperature allowed for the insulation material.

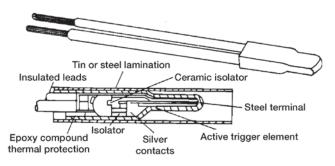
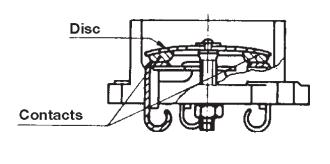


Figure 7.5 - Internal and external view of a thermostat

The thermostats are also used for special applications of single-phase motors. In these applications, the thermostat can be series connected with the motor power supply, provided the motor current does not exceed maximum current allowed for the thermostat. If this occurs, the thermostat must be series-connected with the contactor coil. The thermostats are installed in the winding heads of different phases.

Figure 7.6 - Thermostat installation in the winding

Note: WEG recommends the installation of temperature sensors to protect the winding and bearings of the electric motor and so increase its useful life during operation.


7.2.4 Phenolic Thermal Protection System

These bimetal temperature sensors are fitted with NC contacts and are applied mainly for overheating protection of single-phase induction motors, caused by overloads, locked rotor conditions, voltage drops, etc.

The thermal protector is basically formed by one bimetallic disc that has two moving contacts, one resistance and one pair of fixed contacts. The thermal protector is series-connected with the power supply and, due to the thermal dissipation caused by the current flowing through its internal resistance, the disc is submitted to a deformation that opens the contacts and the motor power supply is interrupted.

After the temperature drops below the specified one, the thermal protector will reset. Depending on the reset method, two types of thermal protectors may be used:

- a) Auto-reset thermal protector
- b) Manual reset thermal protector

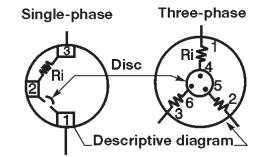


Figure 7.7 - Internal view of the thermal protector

Thermal protectors can also be used for three-phase motors, but only when Y connected. The following connection diagram can be used:

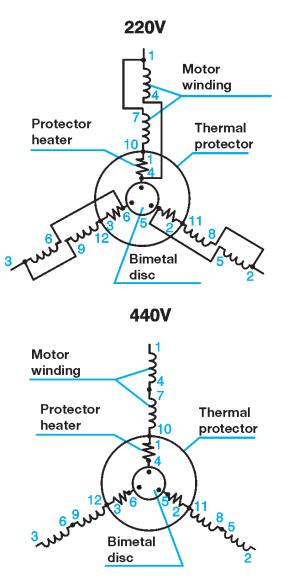


Figure 7.8 - Thermal protector connection diagram for three-phase motors

Advantages

- Combination of a thermal protector sensitive to temperature and current;
- Possibility of automatic reset.

Disadvantages

- Current limitation, since the thermal protector is directly connected to the winding of the single-phase motor;
- Application on three-phase motors only when starconnected.

Note: WEG recommends the installation of temperature sensors to protect the winding and bearings of the electric motor and so increase its useful life during operation.

	Thermoresistor (Pt-100)	Thermistor (PTC and NTC)	Thermostat	Phenolic Thermal protector
Protection device	Calibrated resistance	Semiconductor	Moving contactsBimetal cont.	Moving contacts
Disposition	Winding head	Winding head	 Inserted in the Inserted in the winding head 	Inserted in the circuit
Operation	External control of the protection system	External control of the protection system activation	 Direct activation External control of the protection system active. 	Direct activation
Current limitation	Control current	Control current	 Motor current Control current 	Motor current
Type of sensitivity	Temperature	Temperature	Current and temperature	Current and temperature
Number of Units per motor	3 or 6	3 or 6	3 or 6 1 or 3	1
Type of control	Alarm and/or tripping	Alarm and/or tripping	 Tripping Alarm and/or tripping 	Tipping

Table 7.5 - Thermal protection

	Current base	Protection	
	Only fuse or Circuit breaker	Fuse and thermal relay	with thermal probes and thermal realy
Causes of overheating			
Overload with 1.2 times rated current	0		
Duty cycles S1 to S10	0	0	
Braking, reversals and frequent starts	0	•	•
Operating with more than 15 starts per hour	0	•	•
Locked rotor		•	
Phase fault	0		
Excessive voltage oscillation	0		
Line frequency oscillation	0		
Excessive ambient temperature	0	0	
External heating caused By bearing, belts, pulleys, etc	0	0	•
Obstructed ventilation	0	0	

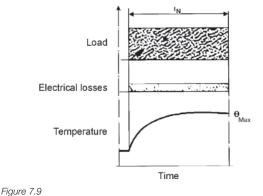
Table 7.6 - Comparison between motor protection systems

Caption: Unprotected Partially protected Totally protected

We do not recommend using "molded case circuit-breaks for distribution and miniature circuit breakers for the protection of electric motor starting since these devices do not meet the electric motor protection standard due to the following reasons:

- Usually these circuit-breakers do not have regulation/setting possibilities for their thermal current/rated overload, having only fixed values of this rated current and in most cases it is not equal to the rated current of the motor.
- In the case of three-phase systems, the thermal device of the circuit-breakers do not have the protection against "phase fault" as its thermal device does not have the "typical bipolar overload" - 2 phases - provided on the normal and the electronic overload relays.

7.3 Service Duty


According to IEC 60034-1, the service duty is the degree of regularity of load to which the motor is submitted. Standard motors are designed for continuous running duty. The load is constant during an indefinite period of time, and it is equal to the rated motor output. It is purchaser's responsibility to state the duty as accurately as possible. In cases where there are no load variations or when variations can be predicted, the duty can be indicated by numbers or by means of charts representing the load variations over time. Whenever the actual load variation in real time cannot be determined a fictitious sequence, no less severe than the actual duty should be indicated by the customer. When another starting duty is used than the informed one on the motor nameplate this may result in motor overheating and consequent motor damage. In case of doubt, contact WEG.

7.3.1 Standardized Service Duties

According to IEC 60034-1, the duty types and the assigned alphanumeric symbols are explained below:

a) Duty type (S1) - continuous running duty

Operation at a constant load maintained for sufficient time to allow the machine to reach the thermal equilibrium, see Figure 7.9.

= operation time at constant load

 t_N $\theta_{m \acute{a} x}$ = maximum temperature attained

b) Duty type (S2) - Short-time duty

Operation at a constant load for a given time, less than that required to reach thermal equilibrium, followed by a time de-energized and at rest of sufficient duration to re-establish machine temperature within +2 K of the coolant temperature, see figure 7.10.

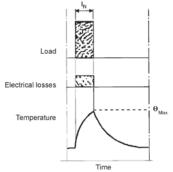
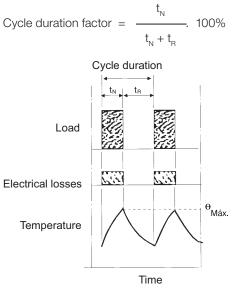



Figure 7.10

= operation time at constant load t_N $\theta_{m\acute{a}x}$ = maximum temperature attained

c) Duty type S3 - Intermittent periodic duty

A sequence of identical duty cycles, each including a time of operation at constant load and a time de-energized and at rest. These periods are so short that the thermal equilibrium is not reached during one duty cycle and the starting current does not significantly affect the temperature rise (see Figure 7.11).

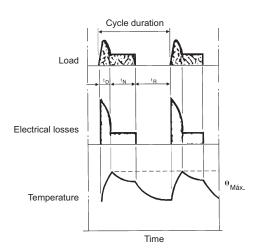
= operation time at constant load

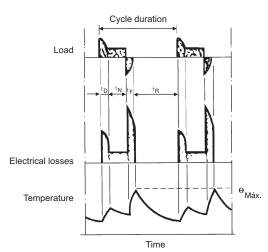
= time at rest θ = maximum temperature attained

d) Duty type S4 - Intermittent periodic duty with starting

A sequence of identical duty cycles, each cycle consisting of a starting, a time of operation at constant load and a time de-energized and at rest. These periods are so short that the thermal equilibrium is not reached, see Figure 7.12.

Cycle duration factor =
$$\frac{t_{D} + t_{N}}{t_{D} + t_{N} + t_{B}}$$
. 100%



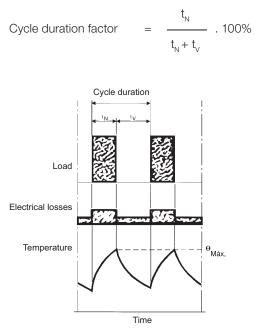

Figure 7.12

- = starting/accelerating time
- = operation time at constant load t_N
- t_R = time at rest
- = maximum temperature attained θ_{max}

e) Duty Type S5 - Intermittent periodic duty with electric braking

A sequence of identical duty cycles, each cycle consisting of a starting time, A time of operation at constant load, a time of electric braking and a time de-energized and at rest. These periods are so short that the thermal equilibrium is not reached, see Figure 7.13.

Cycle duration factor
$$= \frac{t_D + t_N + t_F}{t_D + t_N + t_F + t_R} . 100\%$$


Figure 7.13

= starting/accelerating time

- = operation time at constant load t_N
- = time of electric braking t_F
- = time at rest

 $t_R \\ \theta_p$ = maximum temperature attained

f) Duty Type S6 - Continuous operation periodic duty A sequence of identical duty cycles, each cycle consisting of a time of operation at constant load and time of operation at no-load. There is no time de-energized and at rest, see

Figure 7.14

Figure 7.14.

= operation time at Constant load

= operation time at no-load

 θ_{max} = maximum temperature attained

g) Duty type S7 - Continuous operation periodic duty with electric braking

A sequence of identical duty cycles, each cycle consisting of a starting time, a time of operation at constant load and time of electric braking. There is no time de-energized and at rest, see Figure 7.15.

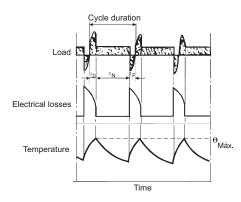


Figure 7.15

- = starting/acceleration time
- operation time at constant loadtime of electric braking $t_N t_F$

 $\boldsymbol{\dot{\theta}}_{m\!\!\!\!\!\!ax}$ = maximum temperature attained

h) Duty type S8 - Continuous operation periodic duty with related load/speed changes

A sequence of identical duty cycles, each cycle consisting of a time of operation at a constant load corresponding to a predetermined speed of rotation, followed by one or more times of operation at other constant loads corresponding to different speeds of rotation. There is no time de-energized and at rest (see Figure 7.16).

Cycle duration factor:

For N1 =
$$\frac{t_D + t_{N1}}{t_D + t_{N1} + t_{F1} + t_{N2} + t_{F2} + t_{N3}}$$
 100%

= For N2 =
$$\frac{t_{F1} + t_{N2}}{t_D + t_{N1} + t_{F1} + t_{N2} + t_{F2} + t_{N3}} \qquad . 100\%$$

For N3 =
$$\frac{t_{F2} + t_{N3}}{t_{D} + t_{H} + t_{F2} + t_{N3} + t_{F2} + t_{N3}} \quad . \quad 100\%$$

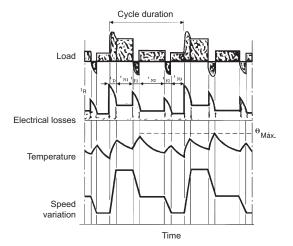
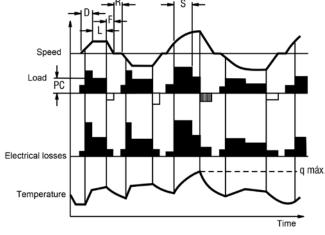
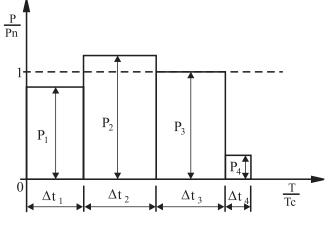
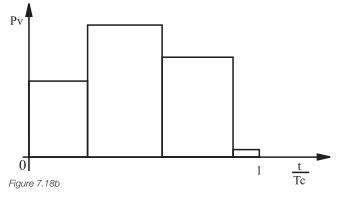



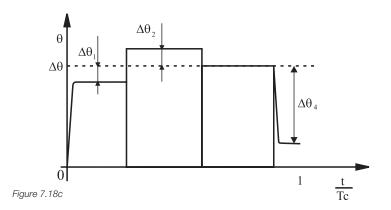
Figure 7.16

= time of electric braking $t_{F1} - t_{F2}$ $\begin{array}{l} & \quad \\ & \quad \\ = & starting/accelerating time \\ -t_{N2} - t_{N3} & = operation time at constant load \\ & \quad \\ = & maximum temperature attained \end{array}$

i) Duty type S9 - Duty with non-periodic load and speed variations


A duty in which generally load and speed vary non=periodically within the permissible operating range. This duty includes frequently applied overloads that may greatly exceed the reference load (see figure 7.17).




${\rm j}$) Duty type S10 - Duty with discrete constant loads and speeds

A duty consisting of a specific number of discrete values of loads (or equivalent loading) and if applicable, speed, each load/speed being maintained for sufficient time to allow the machine to reach thermal equilibrium, see Figures 7.18a, b, and c. The minimum load within a duty cycle may have the zero value (no-load or de-energized and at rest).

Note: with respect to duties S3 through to S8, the time of operation is generally too short to reach the thermal equilibrium. The motor heats up partially and cools down at every cycle. Only after many cycles, the motor reaches the thermal equilibrium.

k) Special duties

The load can vary during operation time or when reversal or counter-current braking, etc. is activated. The proper motor selection can only be ensured after contacting the factory and providing a complete description of the cycle:

- Motor output required to drive the load. If the load varies cyclically, provide a load x time diagram (as example see Figure 7.15).
- Resistive torque of the load.
- Total moment of inertia (GD2 or J) of the driven machine with reference to its rated speed.
- Number of starts, reversals, counter-current braking, etc.
- Operation time with load and time at rest/no-load.

7.3.2 Duty Type Designation

The duty type shall be designated by the symbol described in item 7.3. The continuous running duty can be indicated alternatively by the word "continuous". Examples for the duty type designation:

1) S2 60 seconds

The designation of the duties S2 to S8 is given by the following indications:

- a) S2, operation time at constant load;
- b) S3 to S6, cycle duration factor;
- c) S8, each one of the rated speeds that are part of the cycle, followed by its respective rated output and its duration time.

For the duty types S4, S5, S7, and S8 other indications can be added to the designation, however, these indications should be agreed previously between the manufacturer and the customer.

Note: as an example of the indications to be added, previously agreed relating to the duty type designation different from the continuous running duty, following indications can be made relative to the considered duty type.

- following indications can be made relating to the considered duty type:
- a) Number of starts per hour; b) Number of braking per hour;
- c) Type of braking;
- d) Constant of kinetic energy (H), rated speed of motor and load. The last one can be changed by the inertia factor (FI).

Where: constant of kinetic energy is the ratio between the kinetic energy (stored in the rotor at rated speed) and the rated apparent power. The inertia factor is the ratio between the sum of total inertia moment of load (referred to the motor shaft) and the rotor moment of inertia.

2) S3 25%; S6 40%

3) S8 motor H.1 Fl. 10 33 cv 740rpm 3min

Where: - H.1 is a Constant of the kinetic energy of 1s; - Fl.10 is an inertia factor of 10.

4) S10 para ∆t = 1.1/0.4; 1.0/0.3; 0.9/0.2; r/0.1; TL = 0.6.

Where: Δt is in p.u. (per unit) for the different loads and their respective operations. The TL value is given p.u. for the expected lifetime of the thermal insulation system. During the time at rest, the load must be indicated by the letter "r".

7.3.3 Rated Output

Rated output is the mechanical power available at shaft end, within its characteristics at continuous running duty. The rated output concept, i. e., the mechanical power available at shaft end, is directly related to the temperature rise of the winding. As you know, the motors can drive much higher power loads than its rated output, until it almost reaches the breakdown torque. However, if the overload exceeds motor output for which it has been designed, overheating will be generated and the motor lifetime will be reduced significantly, or may even result in motor burn out.

Consider that the required motor power is always defined by the load characteristics, for example: a load of 90 HP required from the motor, will be always 90 HP even if the motor has been designed for 75 HP or 100 HP.

7.3.4 Equivalent Power Ratings for Low Inertia Loads

It is assumed that the electric motor must supply to the driven machine the required power. It is also recommended that the motor provides some extra power for eventual overloads; depending on the duty cycle, the motor can occasionally supply more or less power. Although there are many standardized ways to describe the running conditions of a motor, it is often necessary to evaluate the load conditions imposed on the motor by more complex duty cycles than those described in the standards. The formula below gives a usual method to calculate the equivalent power rating:

 $P_{m^{2}} = \frac{1}{T} \sum_{t=0}^{t} P(t)^{2} \Delta t$

Where: $P_m = equivalent power required from the motor$ <math>P(t) = power, variable with time, required from the motor<math>T = total cycle time (period)

This method is based on the hypothesis that the effective load applied to the motor will provide the same thermal requirements than a fictitious equivalent load, that requires continuously the power Pm. It is also based on the fact that load losses vary according to the square of the load, and that the temperature rise is directly proportional to losses. This is true for motors that run continuously but drive intermittent loads.

So:

$$P_{m} = \sqrt{\frac{P_{1}^{2} \cdot t_{1} + P_{2}^{2} \cdot t_{2} + P_{3}^{2} \cdot t_{3} + P_{4}^{2} \cdot t_{4} + P_{5}^{2} \cdot t_{5} + P_{6}^{2} \cdot t_{6}}{t_{1} + t_{2} + t_{3} + t_{4} + t_{5} + t_{6}}}$$

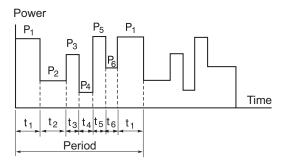


Figure 7.19 - Continuous running with intermittent loads

If the motor is at rest between the operation times, the motor cooling will be reduced. Thus, for motors where the cooling efficiency is directly related to motor operation (for example, TEFC motors), the equivalent power is calculated by the following formula:

$$(P_m)^2 = \frac{\Sigma (P_i^2, t_i)}{\Sigma (t_i + \frac{1}{3} t_r)}$$

where:
$$t_i = load$$
 time $t_i = t_i$

$$t_r = time at rest$$

 $P_i = corresponding loads$

$$P_{m} = \sqrt{\frac{P_{1}^{2} \cdot t_{1} + P_{3}^{2} \cdot t_{3} + P_{5}^{2} \cdot t_{5} + P_{6}^{2} \cdot t_{6}}{t_{1} + t_{3} + t_{5} + t_{6} + \frac{1}{3}(t_{2} + t_{4} + t_{7})}}$$

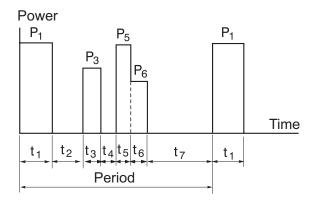


Figure 7.20 - Operation with variable load and at rest between the operations times

Page 154

7.4 Service Factor (SF)

Service factor (SF) is the factor that, when applied to rated output, represents the allowable load that can be applied to motor continuously, under specified operating conditions. Note that this refers to continuous overload conditions, i.e., a power reserve that gives the motor a better capacity to withstand adverse operating conditions. Service factor should not be confused with momentary overload capacity during a few minutes. A service factor = 1.0 means that the motor has not been designed for continuous operation above its rated output. However, this does not change its capacity to withstand instantaneous overloads. IEC 60034-1 specifies the most common Service Factors per motor output.

8. Environment Characteristics

The selection of electric motor for particular applications should consider some parameters such as:

- Altitude where the motor will be installed;
- Temperature of the cooling medium.

According to IEC 60034-1, the usual service conditions are: a) Altitude not exceeding 1.000 masl;

b) Cooling medium (in most cases, the ambient air) with temperature not exceeding 40 °C and free from harmful substances.

Up to altitudes not exceeding 1.000 masl and ambient temperatures not exceeding 40 °C, the operating conditions are considered normal and the motor must supply its rated output without overheating.

8.1 Altitude

Motors operating at altitudes above 1000 m.a.s.l will have overheating problems caused by the rarefaction of the air which results in the reduction of the cooling capacity. Poor heat exchange between the motor and cooling air will require a loss reduction which will also reduce the motor output.

The motor heating is directly proportional to losses and these vary in quadratic proportion with the motor outputs. There are some application alternatives to be evaluated:

- a) The installation of a motor at altitudes above 1000 masl can be made by using insulating material of higher thermal class;
- b) As per IEC 60034-1, temperature rise limits must be reduced by 1% for every 100 m of the altitude above 1000 masl. This rule is valid for altitudes up to 4.000 masl. For higher altitudes, please contact WEG.

Example:

A class B, 100 HP motor, Δ t 80 K, operating at an altitude of 1500 masl, the ambient temperature of 40 °C must be reduced by 5 °C, resulting in a maximum stable temperature of 36 °C. The ambient temperature may be evidently higher provided that temperature rise is lower than the temperature class of the insulating materials.

 $T_{amb} = 40 - 80 \cdot 0.05 = 36 \circ C$

8.2 Ambient Temperature

Motors operating at temperatures below 20°C will have the following problems:

- a) Excessive condensation, requiring additional condensed water drains or installation of space heaters when motor remains out of service for long periods;
- b) Bearing frosting which causes grease or lubricant hardening requiring the use of special lubricants or antifreeze grease (please check our website).

Motors operating continuously at ambient temperatures above 40 °C, their insulation system can be damaged. A possible solution for this problem is to build the motor with a special design using special insulating materials or oversizing the motor.

8.3 Determining Useful Motor Output at Different Temperature and Altitude Conditions

Combining effects of temperature and altitude variation, the dissipation capacity of motor output can be obtained multiplying the useful output by the multiplying factor of table 8.1 below:

Example:

A Class F Insulation motor, 100 HP, operating at an altitude of 2.000 masl and the ambient temperature of 55 °C. Based in table 8.1 - α = 0.83 thus P" = 0.83 , Pn The motor can only supply 83% of its rated output.

T (°C)	Altitude (m)								
1(0)	1000	1500	2000	2500	3000	3500	4000	4500	5000
10							0,97	0,92	0,88
15						0,98	0,94	0,90	0,86
20					1,00	0,95	0,91	0,87	0,83
25				1,00	0,95	0,93	0,89	0,85	0,81
30			1,00	0,96	0,92	0,90	0,86	0,82	0,78
35		1,00	0,95	0,93	0,90	0,88	0,84	0,80	0,75
40	1,00	0,97	0,94	0,90	0,86	0,82	0,80	0,76	0,71
45	0,95	0,92	0,90	0,88	0,85	0,81	0,78	0,74	0,69
50	0,92	0,90	0,87	0,85	0,82	0,80	0,77	0,72	0,67
55	0,88	0,85	0,83	0,81	0,78	0,76	0,73	0,70	0,65
60	0,83	0,82	0,80	0,77	0,75	0,73	0,70	0,67	0,62
65	0,79	0,76	0,74	0,72	0,70	0,68	0,66	0,62	0,58
70	0,74	0,71	0,69	0,67	0,66	0,64	0,62	0,58	0,53
75	0,70	0,68	0,66	0,64	0,62	0,60	0,58	0,53	0,49
80	0,65	0,64	0,62	0,60	0,58	0,56	0,55	0,48	0,44

Table 8.1 Multiplying factor for the useful output as a function of the ambient temperature (T) at "°C" and altitude (H) in "m".

8.4 Environment

8.4.1 Aggressive Environments

The aggressive environment such as shipyards, port facilities, fish industries, marine applications, chemical, and petrochemical industries require that all equipment operating at such environments are suitable and reliable to withstand such harsh conditions without presenting any problem.

For the application of electric motors in these aggressive environments, WEG has a specific line for each motor type duly designed to meet specific and standardized requirements for the most adverse operating conditions. These motors can be delivered with the following special characteristics:

- Double impregnated winding
- Anticorrosive alkyd paint (inside and outside)
- Galvanized mounting bolts
- Oil seal between the shaft and end shield (may be lip seal, W3Seal, etc.)
- Additional protection by sealing joints.

For environments with a temperature range between -16°C and 40 °C and relative air humidity \leq 95%, anticorrosive coating for internal surfaces is recommended. For environments with temperatures between 40 °C and 65 °C also anticorrosive coating for internal surfaces is recommended, however, a derating factor to 40 °C should be considered.

Note: for environments with relative air humidity ≥ 95%, anticorrosive coating for internal surfaces with connection of space heater is recommended.

For marine motors, the specific operating characteristics are defined by the type of driven load on board. However, all motors offer the following special features:

- Reduced temperature rise for operation in ambient up to 50 °C
- Capacity to withstand without any problem, sudden overload conditions of short duration up to 60% above the rated torque, as specified in standards of Certification Bodies.

WEG rigid control during the production process ensures reliable operation to the marine motors. They meet the construction and inspection requirements as well as the tests specified in the standards of the Certification Bodies, such as:

- Registro Italiano Navale (RINA)
- American Bureau of Shipping (ABS)
- Bureau Veritas (BV)
- China Certification Society (CCS)
- Det Norske Veritas and Germanischer Lloyd (DNV GL)
- Lloyd's Register (LR)
- Russian Maritime Register of Shipping (RS)
- Korean Register of Shipping (KRS)
- Nippon Kaiji Kyokai (ClassNK)

8.4.2 Environments Containing Dust or Fibers

To analyze whether motors are suitable to operate in these environments, the following information should be available: approximate size and amount of fibers present in the environment. This information is since along the time, the fibers can obstruct the ventilation system resulting in motor overheating. If fiber content is excessive, air filters should be applied or the motor must be cleaned frequently.

Prevent motor cooling impairment

For this case there are two solutions:

- 1) Use motors without ventilation system;
- 2) For motor with cooling by ducts, calculate the volume of air to be displaced by the motor fan, by establishing the airflow required for perfect the motor cooling.

8.4.3. Explosive Atmospheres

Explosion-proof, non-sparking, increased safety and dustproof motors are intended for use in explosive atmospheres containing combustible gases, vapors, or explosive dust or fibers. Chapter 9 (explosive atmospheres) deals specifically with this subject.

8.5 Degree of Protection

Enclosures of electrical equipment, according to characteristics where they will be installed and their maintenance accessibility, should offer a certain degree of protection. Thus, for example, an equipment to be installed in a location subjected to water jets must have housing capable of withstanding the water jets under determined pressure and angle of incidence, without water penetration.

8.5.1 Identification Codes

Standard IEC 60034-5 defines the degrees of protection of electrical equipment by means of the characteristic letters IP, followed by two characteristic numerals.

	First characteristic numeral					
1 st charact. numeral	Definition					
0	No-protected machine					
1	Machine protected against solid objects greater than 50 mm					
2	Machine protected against solid objects greater than 12 mm					
3	Machine protected against solid objects greater than 2,5 mm					
4	Machine protected against solid objects greater than 1,0 mm					
5	Dust-protected machine					
6	Dust-tight machine					

Table 8.2 - The first characteristic numeral indicates the degree of protection against the ingress of solid objects and accidental or inadvertent contact.

	Second characteristic numeral				
2 nd charact. numeral	Definition				
0	No-protected machine				
1	Machine protected against dripping water				
2	Machine protected against dripping water when tilted up to 15°				
3	Water falling as a spray at any angle up to 60° from the vertical				
4	Water splashing against the machine from any direction				
5	Water protected by a nozzle against the enclosure from any direction				
6	Water from heavy seas or water projected in powerful jets				
7	Machine protected against the effects of immersion				
8	Machine protected against the effects of continuous submersion				

Table 8.3 - The second characteristic numeral indicates the degree of protection against the ingress of water in the machine

The combination of the two characteristic numerals, i. e., between The two degrees of protection are shown in Table 8.4. According to standards the qualification of a motor is clearly defined for each degree of protection by standardized tests that do not leave any scope of misinterpretation.

Motor	Degree	First characte	Second char. numeral	
WOLOF	Protection	Protected against Accidental contact	Protected against solid object	Protected against water
	IP00	Non-protected	Non-protected	Non-protected
	IP02	Non-protected	Non-protected	Protection against dripping water even when tilted 15° vertically
	IP11	Protection against accidental contact with the hand	Ingress of solid objects exceeding 50 mm in diameter	Protection against dripping water falling vertically
Open	IP12	Protection against accidental contact with the hand	Ingress of solid objects exceeding 50 mm in diameter	Protection against dripping water even when tilted 15°
motors	IP13	Protection against accidental contact with the hand	Ingress of solid objects exceeding 50 mm in diameter	Protection against dripping water even when tilted 60°
	IP21	Protection against the touching with the finger	Ingress of solid objects exceeding 12 mm in diameter	Protection against dripping water falling vertically
	IP22	Protection against the touching with the finger	Ingress of solid objects exceeding 12 mm in diameter	Protection against dripping water even when tilted 15°
	IP23	Protection against the touching with the finger	Ingress of solid objects exceeding 12 mm in diameter	Protection against dripping water even when tilted 60°
	IP44	Protection against the touching with tools	Ingress of solid objects exceeding 1 mm in diameter	Protection against splashing water from any direction
Closed motors	IP54	Protection against contacts	Protection against the accumulation of harmful dust	Protection against splashing water from any direction
	IP55	Protection against touches	Protection against the accumulation of harmful dust	Protection against water jets from any direction

Table 8.4 - Degree of Protection

8.5.2 Usual Degrees of Protection

Although some characteristic numerals to indicate the degree of protection can be combined in different ways, only a few degrees of protection are usually employed. They are: IP21 and IP23 (to open motors), IP44 and IP55 (to enclosed motors). For special and more dangerous areas there are other commonly used degrees of protection such as IPW 55 (weather protection) IP56 (protection against water jets), IP65 (totally protected against dust) and IP66 (totally protected against dust and water jets).

Bearing sealing

To meet the degree of protection required for each application, the motors have sealings that prevent the entry of waste through the bearings.

WEG Motors can be supplied with the following bearing sealing:

- V'Ring
- Lip seal / Oil seal
- Labyrinth
- WSeal® Exclusive WEG's sealing system that consists of a V'Ring with double lips and metal cap mounted on this ring.
- W3 Seal[®] Exclusive WEG's sealing system that consists of three seals: V'Ring, O'Ring, and Labyrinth.

The WSeal[®] and W3 Seal[®] sealing systems have been developed by WEG to protect the motor against the accumulation of solid and liquid impurities present in the environment.

NOTE: To know the motor sealing, you should consult the seals available by product line and frame size. The above options suit most applications on the market. For more information, contact WEG.

8.5.3 Weather Protected Motors

According to IEC 60034-5, the motor will be weather protected when due to its design (technical discussion between customer and WEG), the defined protections provide a correct operation of the motor against rain, dust and snow.

WEG also uses the letter W to indicate the degree of protection of the motor to indicate that the motor has a special paint plan (weather protected). The painting plans may vary according to the environmental severity, which should be informed by the customer during motor specification/order.

Aggressive environments require that equipment be perfectly suitable to support such conditions ensuring high reliability in service without showing any problems.

WEG manufacturers a wide range of electric motors with special characteristics, suitable for use in shipyards, ports, fishing plants and several naval applications, as well as in chemical and petrochemical industries and other aggressive environments. So WEG motors are suitable to operate under the most severe operational conditions.

8.6 Space Heater

The space heater are installed inside the motor when it operates in high-humidity environments, (humidity> 95%) and / or when it remains out of operation for long periods

(longer than 24 h), thus preventing water accumulation water inside the motor by the condensation of humid air.

The space heater heats up the motor inside few degrees above the ambient temperature (5-10 °C), when the motor is switched off. The supply voltage of the space heaters must be specified by customer. The space heaters can be supplied for following supply voltage: 110 V, 220 V and 440 V.

Depending on the frame size, following space heaters will be installed. See Table 8.5:

Frame size	Quantity	Power (W)
63 to 80	1	7.5
90 to 100	1	11
112	2	11
132 to 160	2	15
180 to 200	2	19
225 to 250	2	28
280 to 315	2	70
355 to 315B	2	87

Table 8.5 - Space heaters

WARNING: the space heaters should only be powered on when motor is off, otherwise the motor may overheat, resulting in potential damages. Disconnect input power to the motor before performing any maintenance. Also space heaters must be disconnected from input power.

8.7 Noise Levels

WEG Motors comply with NEMA and IEC standards which specify the maximum sound pressure levels in decibels. The values of Table 8.6 comply with IEC 600034-9 standard.

	2 p	oles	4 pi	oles	6 poles		8 p	oles
Frame size	Sound power level	Sound pressure level						
90	83	71	69	57	66	54	66	54
100	87	75	73	61	67	55	67	55
112	88	76	75	63	73	61	73	61
132	90	78	78	66	76	64	74	62
160	92	79	80	67	76	63	75	62
180	93	80	83	70	80	67	79	66
200	95	82	86	73	83	70	82	69
225	97	84	87	74	83	70	82	69
250	97	83	88	74	85	71	83	69
280	99	85	91	77	88	74	85	71
315	103	88	97	82	92	77	91	76
355	105	90	98	83	97	82	95	80

Table 8.6 - Maximum sound power and sound pressure levels for three-phase motors (IC411,IC511,IC611), at no-load, in dB(A), 60 Hz.

Note 1: motors with cooling method IC01,IC11,IC21 may present higher sound power levels: 2 and 4 poles +7dB(A), - 6 and 8 poles +4dB(A). Note 2: the sound power levels for 2 and 4 poles, frame size 355 are valid for unidirectional fans. The other sound Power levels are valid for bidirectional fans. Note 3: the values for 50 Hz motors should be decreased by : 2 poles -5dB(A); 4, 6 and 8 poles -3dB(A).

Table 8.7 shows the increments to be considered for the sound power and sound pressure levels, in dB (A), for motors operating at load conditions.

Frame size	2 poles	4 poles	6 poles	8 poles
90 to 160	2	5	7	8
180 to 200	2	4	6	7
225 to 280	2	3	6	7
315	2	3	5	6
355	2	2	4	5

Table 8.7 - Maximum estimated increment for the sound power and sound pressure levels, in dB (A).

Note 1: this table provides the maximum expected increment at rated load conditions. Note 2: the values are valid for 50 Hz and 60 Hz.

9. Explosive Atmosphere

9.1 Hazardous Area

An installation where inflammable products are continually handled, processed or stored requires special care to ensure the maintenance of property and the personnel safety.

Based on their characteristics, electric equipment can become ignition sources causing sparks, when opening or closing contacts or due to overheating of any component, caused intentionally or originated by fault currents.

9.2 Explosive Atmosphere

An atmosphere is considered explosive when the proportion of gas, vapor, dust, fibers, or flyings is such that after sparking caused by short-circuit or overheating of one component causes an ignition and explosion. Three elements are required for an explosion to occur:

Fuel + oxygen + ignition = explosion

9.3 Classification of Hazardous Areas

According to IEC 60079-10-1 Standard, hazardous areas are classified as follows:

Zone 0:

Area where the occurrence of a flammable and/or explosive mixture is continuous, or exists for long periods. For example, inside a fuel tank the explosive atmosphere is always present.

Zone 1:

Area where the probability of occurrence of a flammable and/ or explosive mixture is associated with normal equipment and process' operation. The explosive atmosphere is frequently present.

Zone 2:

Area in which an explosive gas atmosphere is not likely to occur in normal operation, but if it does occur, will persist for a short period only. This conditions associated with abnormal operation of equipment and process, losses or negligent use. The explosive atmosphere may accidentally be present.

According to NEC/API 500 Standards, the hazardous areas are classified as follows:

- Division 1 Area where there is HIGH probability of occurring an explosion.
- Division 2 Area where there is lower explosion probability.

	Occurrence of flammable mixtures					
Standards	Continuously present	Under normal conditions	Under abnormal conditions			
IEC	Zone 0	Zone 1	Zone 2			
NEC/API	Divis	Division 2				

Table 9.1 - Comparison between ABNT/IEC and NEC/API

The process of dust storage in confined spaces offers potentially explosive atmospheres. This occurs when dust is mixed with air in the form of a dust cloud or when the dust is deposited on the electrical equipment. Areas where dust, flyings and fibres in air occur in dangerous quantities are classified , according to IEC 61241-10, as hazardous and are divided into three zones according to the level of risk.

Zone 20:

Area in which an explosive atmosphere in the form of a cloud of combustible dust in air is present continuously for long periods.

Zone 21:

Area in which an explosive atmosphere in the form of a cloud of combustible dust in air is likely to occur, occasionally, in normal operation.

Zone 22:

Area in which an explosive atmosphere in the form of a cloud of combustible dust in air is not likely to occur in normal operation but, if it does occur, will persist for a short period only.

Among the products where their powders or dusts create potentially explosive environments inside confined ambient are the coal, wheat, cellulose, fibers and plastics in finely divided particles, etc.

9.3.1. Classes and Groups of the Hazardous Areas

Classes - refer to the nature of the mixture. The concept of classes is only adopted by the NEC standard.

Groups - The definition of groups is associated with the composition of the mixture.

Class I

Explosive gases or steams. Based on the type of gas or steam, we have following classification:

■ GROUP A - acetylene

- GROUP B hydrogen, butadiene, ethane oxide
- GROUP C ethyl ether, ethylene
- GROUP D gasoline, naphtha, solvents in general.

Class II

Combustible of conductive dust. Based on the type dust, we have following classification:

- GROUP E
- GROUP F
- GROUP G

Class III

Light and flammable fibers and particles.

According to IEC 60079-0, Hazardous areas are divided into three separate classifications:

- Group I For mines containing methane gas.
- Group II For application in other areas with gas explosive atmospheres. These areas are dived in IIA, IIB and IIC.
- Group III For application in explosive dust atmospheres. These group is divided in:
 - III A Combustible fibers
 - III B Non-conductive dust
 - III C Conductive dust

Gases Standards	Group of Acetylene	Group of Hydrogen	Group of ethane	Group of propane
IEC	II C	II C	II B	II A
NEC/API	Class I Gr A	Class I Gr B	Class I Gr C	Class I Gr D

Table 9.2 - Comparison between IEC and NEC/API for gases

Explosive atmosphere	ABNT / IEC	NEC
Casas ar staama	Zone 0 and Zone 1	Class I Division 1
Gases or steams	Zone 2	Class I Division 2
Combustible dusts	Zone 20 and Zone 21	Class II Division 1
Combustible dusts	Zone 22	Class II Division 2

Table 9.4 - Classification per area according to IEC and NEC

	Dust and fibres	High conductive dust	Light conductive dust	Non- conductive	Combustible fibers	
	Standards		conductive dust	dust		
Γ	NBR IEC	III C	III C	III B	III A	
	NEC/API	Class II Gr E	Class II Gr F	Class II Gr G	Class III	

Table 9.3 - Comparison between Standards IEC and NEC/API for combustible dust and fibers

9.3.2 Protection by Enclosure

	Symbol	Description	Simplified Representation
"db"	Explosion-proof	Type of protection in which the parts capable of igniting an explosive gas atmosphere. Are provided with an enclosure which can withstand the pressure developed during an internal explosion of an explosive mixture, and which prevents the transmission of the explosion to the explosive gas atmosphere surrounding the enclosure.	
"eb", "ec"	Increased safety	Measures that are applied in order to avoid the possibility of excessive temperatures and the occurrence of arcs or sparks inside and on the external parts of the electric material produced under normal conditions.	
"i"	Intrinsic safety "ia", "ib", "ic"	Type of protection, in which no spark or any thermal effect produced in the conditions specified in the standard, including normal operation and specified fault conditions, are capable of causing ignition of a given explosive gas atmosphere.	
"m"	Encapsulation "ma", "mb", "mc"	Type of protection whereby parts that are capable of igniting an explosive atmosphere by either sparking or heating are enclosed in a compound in such a way that the explosive atmosphere cannot be ignited under operating or installation condition.	4
"n"	Non-sparking "nC", "nR"	Type of protection applied to electrical apparatus such that, in normal operation and in certain specified abnormal conditions, it is not capable of igniting a surrounding explosive gas atmosphere. There are two categories of materials: spark generation (nC), encapsulated with limited breathing (nR).	
"0"	Oil immersion	Type of protection in which the electrical apparatus or parts of the electrical apparatus are immersed in a protective liquid in such a way that an explosive gas atmosphere which may be above the liquid or outside the enclosure cannot be ignited.	4
"p"	Pressurization "pxb", "pyb", "pzc"	Type of protection for guarding against the ingress of the external atmosphere into an enclosure or room by maintaining a protective gas therein at a pressure above that of the external atmosphere.	
"q"	Sand filling	Type of protection in which the parts capable of igniting an explosive gas atmosphere are fixed in position and completely surrounded by filling material to prevent the ignition of an external explosive atmosphere.	4
"t"	Protection by enclosure "tb", "tc"	Type of protection where parts that can cause ignition of an explosive atmosphere are protected by an enclosure providing partially or totally protection against dust ingress and a means to limit surface temperature.	

Table 9.5 - Type of protection by enclosure

9.4 Temperature Classes

The maximum temperature on the outer and/or inner surface of an electric equipment must always be lower than the ignition temperature of the gas or steam. Gases can be classified for temperature classes based on their ignition temperature, where the maximum surface temperature of the corresponding class must be lower than the corresponding temperature of the gases.

	0			
IE	C	NI	EC	1
Temperature classes	Maximum surface temperature	Temperature classes	Maximum surface temperature	Ignition temperature of gases and/or steams
T1	450	T1	450	> 450
T2	300	T2	300	> 300
T3	200	T3	200	> 200
T4	135	T4	135	> 135
T5	100	T5	100	> 100
T6	85	T6	85	> 85

Table 9.6 - Temperature classes

9.5 Equipment for Explosive Atmospheres

The tables below show the selection of equipment for hazardous areas classified according to IEC 60079-14:

	IEC 60079-14				
Zone	Possible types of protection				
	Ex "ia"				
Zone 0	Ex "ma"				
	Equipment specially approved for Zone 0				
	Equipment certified for Zone 0				
	Ex "db"				
	Ex "db eb"				
	Ex "eb"				
Zone 1	Ex "pxb", Ex "pyb"				
	Ex "ib"				
	Ex "q"				
	Ex "ob"				
	Ex "mb"				
	Equipment certified for Zone 0 and Zone 1				
	Ex "pzc"				
Zone 2	Ex "ic"				
2018 2	Ex "ec"				
	Ex "oc"				
	Ex "mc"				

Table 9.7 - Types of protection for explosive atmospheres with inflammable gases.

Table 9.8 shows the list of equipment according to standard NEC:

DIVISION 1	Equipment with type of protection: explosion-proof Ex"d" presurization Ex"p" oil immersion Ex"o" intrinsic safety Ex"i"
DIVISION 2	 any equipment certified for Division 1 equipment that do not generate sparks of hot surfaces on general purpose enclosures

Table 9.8

9.6 Increased Safety Equipment

His electrical equipment, under normal operating conditions, does not generate arcs, sparks or sufficient heat to cause ignition of the explosive atmosphere for which it was designed.

Time $t_{\rm E}$ - time taken for an a.c. rotor or stator winding, when carrying the initial starting current IA, to be heated up to the limiting temperature from the temperature reached in rated service at the maximum ambient temperature. Figures below show how to proceed for correct time "t_E" determination. (Figures 9.1 and 9.2).

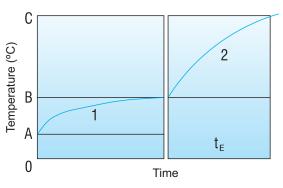
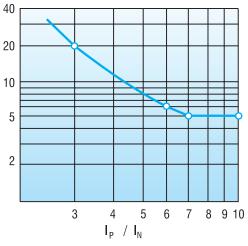


Figure 9.1 - Schematic diagram explaining the method for the time "t_" determination

- maximum ambient temperature
- temperature at rated service condition
- limit temperature
- service temperature rise
- locked rotor temperature rise

t_{E min(s)}


Α

В

С

1

2

9.7 Explosion-Proof Equipment

It is a type of protection where the parts that may ignite an explosive atmosphere are confined within enclosures that can withstand the pressure caused by an internal explosion of an explosive atmosphere and prevents the transmission of the explosion to an explosive atmosphere.

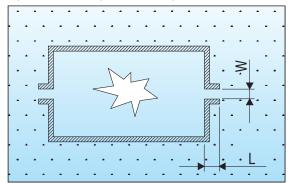


Figure 9.3 - Protection principle

The induction motor (with any type of protection) is not tight protected, i. e., there is air exchange with the environment. During operation, the motor heats up and the inside air will have higher pressure than the outside (air is then blown out); when the power supply is turned off, motor cools down and, as a consequence, the inside pressure decreases allowing penetration of air (which is contaminated). The enclosure will not allow any eventual internal explosion to propagate to the external environment. For the system safety, WEG controls all air gaps - flame paths (tolerances between joints) and the finishing joint since they are responsible for the volume of gases exchanged between the inside and outside the motor.

10. Mounting Arrangements

10.1 Dimensions

Dimensions of WEG electric motors are standardized according to the standard *International Electrotechnical Commission* - IEC-60072. In these standards the basic dimension for the standardization of the assembly dimensions of electric machines is the height from the base to the shaft end center, designated by the letter H (see Figure 10.1).

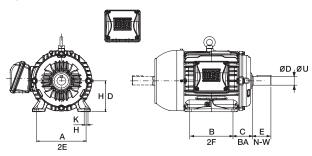


Figure 10.1

To each height of shaft end H, a C dimension is associated, distance from the centerline of mounting hole in the nearest foot to the shoulder on drive end shaft. However, to each H dimension, several B dimension can be associated (distance between centerlines of mounting holes in feet), allowing to have either "longer" or "shorter" motors. The "A" dimension, distance between centerlines of mounting holes in the feet or base of machine, on the front side, is unique for H values up to 315, however it can have multiple values from frame size H equal to 35 mm. For those customers who require standardized frames size according to NEMA standard, table 10.1 makes a comparison between dimensions H-A-B-C-K-D- E of IEC standard and D; 2E; 2F; BA; H; U-N-W of NEMA standard.

ABNT / IEC NEMA	H D	A 2E	B 2F	C BA	K H	Ø D Ø U	E N-W
63	63	100	80	40	7	11j6	23
71	71	112	90	45	7	14j6	30
80	80	125	100	50	10	19j6	40
90 S	90	140	100	56	10	24j6	50
143 T	88.9	139.7	101.6	57.15	8.7	22.2	57.15
90 L	90	140	125	56	10	24j6	50
145 T 100L	88.9 100	139.7 160	127 140	57.15 63	8.7 12	22.2 28j6	57.15 60
112 S	112	190	140	70	12	28j6	60
112 S	114.3	190	114,3	70	10.3	28,6	69.9
112 M	112	190	140	70	12	28j6	60
184 T	114.3	190.5	139.7	70	10.3	28.6	69.9
132 S	132	216	140	89	12	38k6	80
213 T	133.4	216	139.7	89	10.3	34.9	85.7
132 M	132	216	178	89	12	38k6	80
215 T	133.4	216	177.8	89	10.3	34.9	85.7
160 M 254 T	160 158.8	254 254	210 209.6	108 108	15 13.5	42k6 41.3	110 101.6
160 L	160	254	254	108	15	42k6	110
256 T	158.8	254	254	108	13.5	41.3	101.6
180 M	180	279	241	121	15	48k6	110
284 T	177.8	279.4	241.3	121	13.5	47.6	117.5
180 L	180	279	279	121	15	48k6	110
286 T	177.8	279.4	279.4	121	13.5	47.6	117.5
200 M 324 T	200 203.2	318 317.5	267 266.7	133 133	19 16.7	55m6 54	110 133.4
200 L	203.2	317.5	305	133	10.7	55m6	110
326 T	203.2	317.5	304.8	133	16.7	54	133.4
225 S	225	356	286	149	19	60m6	140
364 T	228.6	355.6	285.8	149	19.0	60.3	149.2
225 M	225	356	311	149	19.0	60m6	140
365 T	228.6	355.6	285.8	149	19.0	60.3	149.2
250 S 404 T	250 254	406 406.4	311 311.2	168 168	24 20.6	65m6 73	140 184.2
250 M	250	406	349	168	24	65m6	140
405 T	254	406.4	349.2	168	20.6	73	184.2
280 S	280	457	368	190	24	65m6	140
444 T	279.4	457.2	368.4	190	20.6	73	184.2
280 M	280	457	419	190	24	75m6	140
445 T	279.4	457.2	419.1	190	20.6	85.7	215.9
315 S 504 Z	315 317.5	508 508	406 406.4	216 215.9	28 31.8	80m6 92.1	170 269.9
315 M	317.5	508	400.4	215.9	28	92.1 80m6	170
505 Z	317.5	508	457.2	215.9	31.8	92.1	269.9
355 M	355	610	560	254	28	100m6	210
586	368.3	584.2	558.8	254	30	98.4	295.3
355 L	355	610	630	254	28	100m6	210
587	368.3	584.2	635	254	30	98.4	295.3

Table 10.1 - Dimension comparison between IEC and NEMA

Page 162

10.2 Standardized Type of Construction and Mounting Arrangement

The types of construction and mounting arrangements designate the arrangement of the machine components with regard to fixings, bearing arrangement and shaft extension, as standardized in IEC 60034-7, DIN 42950 and NEMA MG 1-4.03. Standard IEC 60072 determines the location of the terminal box on the motor that shall be situated with its centerline within a sector ranging from the top to 10° below the horizontal centerline of the motor on the right-hand side, when looking at the D-end of the motor.

	Symbol for IEC 60034-7					
Figure	WEG Designation	DIN 42950	Code I	Code II	Frame	Mounting configuration
	B3D	B3	IM B3	IM 1001	with feet	mounted on substructure (*)
	B3E		IW D3		With feet	
	B5D	В5	IM B5	IM 3001	footless	fixed by "FF" flange
	B5E	50	111 00	IM 3001	footless	noo by 11 nango
	B35D		IM B35	IM 2001	with feet	mounted on substructure by feet,
	B35E	B3/B5	111 255	100 2001		with additional fixation by "FF" flange
	B14D	D14	B14 IM B14	IM 3601	footless	
	B14E	Б14				fixed by "C" flange
	B34D	P0/P14	IM D24	IM 0101	with feet	mounted on substructure by feet,
	B34E	B3/B14	IM B34	IM 2101		with additional fixation by "C" flange
Ö	B6D	DC .	IM DC		with foot	wall mounted, feet on the right side,
	B6E	B6	IM B6	IIVI 1051	IM 1051 with feet	looking at the D-en of the motor

Table 10.2a - Standardized mounting arrangements (horizontal mounting) (*) Substructure: bases, base plate, foundation, rails, pedestals, etc.

www.weg.net	ШЕ

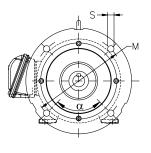
			Symbol for			
Figure	WEO Desimation	DIN 40050	IEC 60	034-7	F	Mounting configuration
	WEG Designation	DIN 42950	Code I	Code II	Frame	
	B7D	87	87	IM 1061 with feet		wall mounted, feet on the right side,
	B7E	В7	D7		With feet	looking at the D-en of the motor
	B8D	B8	IM B8	IM 1071	with feet	fixed to colling
	B8E	Вб	IM B8	IN TUTT	With reet	fixed to ceiling

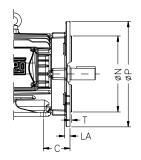
Table 10.2h -	Standardized	mounting	arrangements	(horizontal	mountina)
10010 10.20	0101100101200	mounting	anangomonio	(110112011101	mounting)

			Symbol for			
Figure			IEC 60	034-7		Mounting configuration
- iguio	WEG Designation	DIN 42950	Code I	Code II	Frame	
	V5	V5	IM V5	IM 1011	with feet	wall mounted or mounted on substructure
	V6	V6	IM V6	IM 1031	with feet	wall mounted or mounted on substructure
	V1	V1	IM V1	IM 3011	footless	fixed by "FF" flange, shaft end down
	V3	V3	IM V3	IM 3031	footless	fixed by "FF" flange shaft end up
	V15	V1/V5	IM V15	IM 2011	with feet	wall mounted, with additional fixation by "FF" flange shaft end down
	V36	V3/V6	IM V36	IM 2031	with feet	wall mounted, with additional fixation by "FF" flange shaft end up
	V18	V18	IM V18	IM 3611	footless	fixed by the "C" flange - shaft end down
	V19	V19	IM V19	IM 3631	footless	fixed by the "C" flange - shaft end up

 Table 10.3 - Standardized mounting arrangements (vertical mounting)

 Note: "We recommend to use drip cover for vertical mounted motors with shaft end down and non-weather protected".

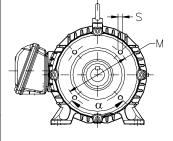

 We recommend to use rubber slinger at the shaft end (coupling side for vertical mounted motors with shaft end up).

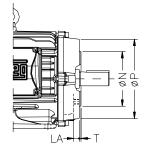


10.3 Flanges Dimensions

"FF" Flange

	Flange "FF"										
Frame	Flange	LA	Μ	Ν	Р	S	Т	α	Nº of holes		
63	FF-115	5,5	115	95	140	10	3				
71	FF-130	7	130	110	160	10					
80	FF-165	9	165	130	200	12	3,5				
90	11-105	10	105	130	200	12					
100	FF-215	12,5	215	180	250			45°	4		
112	FF-215	12,5	215	100	230	15	4	45	4		
132	FF-265	12	265	230	300						
160	FF-300		300	250	250						
180	FF-300		300	250	350	19	5				
200	FF-350	18	350	300	400						
225	FF-400	10	400	350	450						
250			500	450	550	19	5				
280	FF-500		500	450	550			22°30'	8		
315	FF-600	22	600	550	660	24	24 6				
355	FF-740	22	740	680	800	24	0				

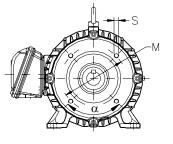


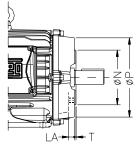


Note: Dimensions in mm.

"C" Flange

	Flange "C"										
Frame	Flange	LA	М	N	Р	S	т	α	Nº of holes		
63		4,5									
71	FC-95	10	95,2	76,2	143	UNC 1/4"x20					
80		10					4				
90	FC-149	15	149,2	114,3	165	UNC 3/8"x16					
100	10-145	12	149,2	114,5	105	0100 3/8 210		45°	4		
112		13,5						45	4		
132	FC-184	15,5	184,2	215,9	225						
160		19,5				UNC 1/2"x13	6,3				
180	FC-228	20	228,6	266,7	280						
200	10-220	20	220,0	200,7	200						
225	FC-279		279,4	317,5	395						
250	FC-355	25	255.6	106.1							
280	FG-300	20	355,6	406,4		UNC 5/8"x11	6,3	22°30'	8		
315					455		0,3	22 30	0		
355M/L	FC-368	40	368,3	419,1							
355A/B		33,5									




Note: Dimensions in mm.

"C-DIN" Flange

	Flange "C-DIN"											
Frame	Flange	LA	М	N	Р	S	т	α	Nº of holes			
63	C-90	9,5	75	60	90	M5	2.5	0.5	0.5			
71	C-105	8	85	70	105	M6						
80	C-120	10 F	100	80	120	INIO						
90	C-140	10,5	115	95	140		3	45°	4			
100	0.100	12	120	110	100	M8		1				
112	C-160	13,5	130	110	160		3.5	5				
132	C-200	15,5	165	130	200	M10]					

Note: Dimensions in mm.

10.4 Painting

The painting plan below shows the adopted solutions for each application.

	WEG's Painting Plans x ISO 12944 Painting Plans									
WEG Painting Plans	Atmospheric corrosivity categories	Environment Indoor / Outdoor	ronment main				Minimum Total Thickness (µm) ISO 12944	Examples considering environments with a typically temperate climate		
_	ISO 12944-2		>7	7 to 15	15 to 25	> 25				
203A	C3	Indoor / Outdoor	L				80	Atmospheres with low level of pollution. Mostly rural areas.		
207A	C3	Indoor / Outdoor	L				80	Unheated buildings where condensation may occur e.g.		
207N	C2	Indoor / Outdoor			Н		120	depots, sport halls.		
205E	C4	Indoor	L				120	Urban and industrial atmospheres, moderate sulfur dioxide		
205P	C4	Indoor / Outdoor	L				120	pollution. Coastal areas with moderate salinity.		
202P	C4	Indoor / Outdoor		М			180	Production rooms with high humidity and some air		
202E	C4	Indoor		М			180	pollution e.g. foodprocessing plants, laundries, breweries,		
214P	C4	Indoor / Outdoor		М			160	dairies		
222E	C4	Indoor / Outdoor		М			180	Industrial and urban environments, indoor or outdoor, with moderate contamination of corrosive agents		
222P	C4	Indoor / Outdoor		М			180	such as SO2 (sulfur dioxide) and CI- (chloride), which may contain high humidity.		
211P	C5 (I and M)	Indoor / Outdoor		М			240	C51: Industrial areas with high humidity and aggressive atmosphere. Buildings or areas with almost permanent condensation and with high pollution.		
211E	C5 (I and M)	Indoor		М			240	Condensation and with high pollution. C5M: Coastal areas with high salinity. Buildings or areas with almost permanent condensation and with high pollution. CX: Offshore areas with high salinity and industrial areas with extreme humidity and aggressive atmosphere and subtropical and tropical atmospheres. Industrial areas w extreme humidity and aggressive atmosphere.		
212P	CX / C5 (I and M)	Indoor / Outdoor				VH	320			
212E	C5 (I and M)	Indoor				Н	320			

Table 10.4 - Painting Plan

Note: WEG Painting Plans meet the Petrobras standards

For painting over the WEG original painting, please make sure with your paint supplier that the new painting system is compatible with the base paint used in WEG motors and that the surfaces are prepared accordingly, otherwise it can affect the performance of the paint plan and void the product warranty.

10.4.1 Tropicalized Painting

High humidity indexes can result in premature insulation system deterioration which is the main component that ensures the motor lifetime. Any ambient with up to 95% of relative humidity does not require additional protection, other than space heaters to avoid water condensation inside the motor. However, for any ambient with relative humidity above 95%, an epoxy painting is applied on all inside motor components which is known as tropic-proof painting.

11. Three-Phase Electric Motor Selection and Application

On application engineering of electric motors it is common to compare load requirements with motor characteristics. A lot of applications can be correctly driven by more than one type of motor.

This means that selection of a specific type of motor does not necessarily exclude other types.

Application of computers has improved significantly motor calculation resulting in more accurate results along with more economical designs of machines.

WEG induction motors, squirrel cage or slip rings, low or high voltage, can be used on a wide range of applications, specially in steel plants, mines, pulp and paper industries, sanitation, chemical and petrochemical areas, cement plants, among others, requiring more and more correct motor selection for each particular application. Proper motor selection with respect to the type, torque, power factor, efficiency, temperature rise, insulation system, voltage and mechanical degree of protection can only be made after careful overall analysis that takes into consideration certain parameters such as:

- Initial cost
- Power supply capacity
- Requirements for Power factor correction
- Required torques
- Effect of load inertia
- Speed control requirements or not
- Exposure of the machine to wet, polluted and/or aggressive environments.

Squirrel cage asynchronous motor is the most commonly used in any industrial application due to its rugged and simple construction characteristics along with economic factors in reference to the motor itself, as control and protection.

Using WEG Premium line motors is regarded the most convenient current means to reduce energy consumption. It has been proved by tests that these motors have 30% less of losses representing a major energy saving. Designed and manufactured with the state-of-the-art technology, these motors are intended to reduce losses and increase efficiency resulting in low energy consumption and reduced energy bills. These motors are also highly recommended for applications with voltage variation. They are tested in conformance with IEC 60034-1 Standard and their efficiency is indicated on the motor nameplate. The efficiency is determined by the test method B of the IEEE STD 112. Efficiency values are obtained through the loss separation method in accordance with IEC 60034-1.

The Premium line motors are standardized according to IEC standards, maintaining the power/frame ratio and are therefore interchangeable with all standard motors available on the market. Although more expensive than the squirrel cage motors, the application of slip ring motors is necessary for starting heavy loads (high inertia), or when variable speed drives or starting current limitation is required while a high starting torque must be maintained.

Туре	Squirrel Cage induction motor	Slip ring motor
Starting current	High	Low
Starting torque	Low	High
Starting/rated current	High	Low
Breakdown torque	> 160% of the rated torque	> 160% of the rated torque
Efficiency	High	High
Starting switch	Simple for DOL starting	Relatively simple
Protection device	Simple	Simple
Required space	Small	Rheostat requires large space
Maintenance	Small	For slip rings and brushes
Cost	Low	High

Table 11.1 - Comparison between different types of machines

For correct motor selection it is essential to consider all technical application characteristics, specially load, environment and power supply characteristics allowing the designer to calculate the following:

a) Starting torque

The starting torque required to move and overcome the static inertia of the machine. For any load to be accelerated from zero speed to its rated speed, motor torque must be always higher than the load torque.

b) Acceleration torque

This torque is required to accelerate the load to the rated speed. At all points between zero and rated speed, the motor torque must always be higher than load torque. Right over the intersection point of the two curves, acceleration torque is zero, i.e., the balance point from which the speed remains constant is reached. This intersection point between the two curves should correspond to the rated speed.

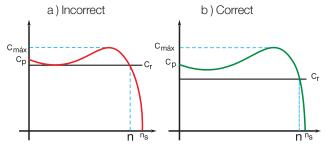


Figure 11.1 - Motor selection considering the resistive load torque

here:	$C_{max} =$	breakdown	torque
-------	-------------	-----------	--------

w

- C_0^{max} = starting torque
- C_r^p = resistive torque
- n_s = synchronous speed
- n = rated speed

The acceleration torque assumes very different values during the starting stage. The average acceleration torque (C_a) is obtained from the difference between motor torque and resistive load torque.

c) Rated torque

It is the torque required to accelerate the load when operating at a specific speed. The torque required for normal operation of a machine can be constant or can vary between wide limits. For variable torques, the breakdown torque should be sufficiently high to withstand momentary overloads. The operating characteristics of a machine, related to torque, can be divided into three classes:

Constant torque

On this type of machine, torque remains constant during speed variation and the output increases proportionally with the speed.

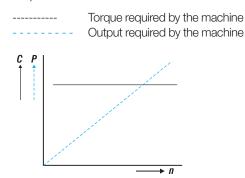


Figure 11.2

C = Constant resistive torque

P = Power: proportional to the speed (n)

Variable torque

Variable torque can be found in pumps and fans.

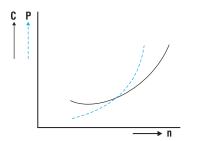
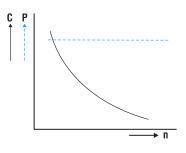



Figure 11.3

- C = Resistive torque: proportional to the square of the speed (n²)
- P = Output: proportional to the cube of the speed (n^3)

Constant power

Constant Power applications require a power equal to the rated Power for any speed.

Figure 11.4

Resistive torque: inversely proportional to the speedConstant power С

Ρ

L and home	Required	d torque		Used makes have
Load type	Starting	Breakdown	Load characteristics	Used motor type
Centrifugal pump, fans, drilling machines, compressors, milling machines, crushers.	Between 1 and 1,5 Times the rated torque	Maximum values between 220% and 250% of the rated torque.	 Easy starting conditions such as intermediate gear boxes, low inertia or application of special couplings simplify starting. Centrifugal machines such as pumps where torque increases with the square of the speed up to a maximum stage reached at rated speed. At rated speed it may be subject to slight overloads. 	 Normal torque Normal starting current Design N
Alternating pumps, compressors, conveyors, feeders, bar milling machines	Between 2 and 3 Times the rated torque	Not higher than two times rated torque	 High starting torque to overcome the high inertia, counter pressure, stop friction, strict material process or similar mechanical conditions. During acceleration, required torque decreases to rated torque. It is inadvisable to subject the motor to overloads at rated speed. 	 High starting torque Normal starting current Design N
Punching presses, cranes, overhead cranes, hoists, mechanical scissors, oil well pumps	3 times the rated torque	It requires two or three times the rated torque. They will be considered as losses during load peaks.	 Intermittent loads requiring high or low starting torque. They require frequent stops, starts and reversals. Driven machines like punching presses that may require fly wheels to withstand the power peaks. Slight regulation may be required to smooth power peaks and reduce mechanical forces on the driven machine. Power supply must be protected from power peaks resulting from load fluctuations. 	 High starting torque Normal starting current High slip Design D
Fans, machine tools	Sometimes only part of the rated torque is required, and other times the full rated torque is required.	Once or twice the rated torque at each speed.	 Two, three or four fixed speeds are sufficient. Speed control is not required. Starting torque can be low (fans) or high (conveyors) Operating characteristics at several speeds may vary between constant power, constant torque or variable torque. Metal cutting machines have constant output power Friction loads are typical examples of constant torque. Fans are typical examples of variable torque. 	 Normal or high torque (multi-speed)

Table 11.2 - Characteristics of different loads.

11.1 Motor Type Selection for Different Loads

11.2 W22 Magnet Drive System®

W22 Magnet Drive System[®] consists of a three-phase synchronous AC motor fitted with high energy magnets in their rotor and driven by a variable frequency drive (VFD)*.

The use of permanent magnets eliminates the Joule losses in the rotor thus ensuring higher efficiency levels than the IE4 efficiency level. As the Joule losses are eliminated, the motor operates colder enabling the use of smaller frame size and increases its lifetime.

The use of frequency inverter enables a continuous control of the motor speed and provides constant torque in the whole speed range, including 0 rpm, without requiring forced ventilation at low frequencies. Due to the rotor design, the used balancing process and the frame size reduction, the vibration and noise levels of W22 Magnet Motors could be reduced when compared to the induction motors with the same output.

Figure 11.5

*W22 Magnet motors must be driven only by the CFW-11 frequency inverter line developed with specific software for this function.

11.3 Application of Induction Motors with Variable Frequency Drives

Inverter fed induction motor drives (also called static frequency converters) are the most common solution used in the industry and is currently the most efficient method for the speed control of induction motors. These applications provide several benefits when compared to other speed control methods. However, these applications depend on a suitable design to take advantage when compared between energy efficiency and costs. Among the many benefits are the cost reduction, remote control, versatility, increased quality and productivity and better use of the energy performance.

11.3.1 Normative Aspects

The breakthrough occurred in the electric motor application with frequency inverters requires increasingly standards development and standards adoption to standardize the procedures for evaluating these drives. The main International Standards that deal with this subject are:

- **IEC: 60034-17 -** Rotating Electrical Machines Part 17: Cage induction motors when fed from converters application guide
- IEC 60034-25 Rotating Electrical Machines Part 25: Guide for the design and performance of cage induction motors specifically designed for converter supply
- NEMA MG1 Application considerations for constant speed motors used on a sinusoidal bus with harmonic content and general purpose motors used with adjustablevoltage or adjustable-frequency controls or both
- NEMS MG1 Part 31: Definite purpose inverter-fed polyphase motor

11.3.2 Induction Machine Speed Variation by Frequency Inverter

The relationship between the rotor speed, the supply frequency, the number of poles and the slip of an induction motor is given by the following equation: number of poles and the slip of an induction motor is given by the following equation:

120.f₁.(1-s)

r

where: n = mechanical speed [rpm] f = line frequency [Hz] p = number of poles

s = slip

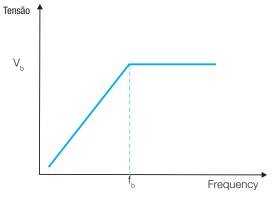
The analysis of the formula shows that the best way to vary the speed of an induction motor is by varying the supply frequency. The frequency inverters transform the line voltage, with constant amplitude and frequency, into a voltage with variable amplitude and frequency. The speed of the rotating field and consequently the mechanical speed of the motor is changed by varying the frequency of the supply voltage. Thus, the inverter operates as a source of variable frequency to the motor. According to the induction motor theory, the electromagnetic torque developed by the motor is given by the following equation:

$$\mathsf{T} = \mathsf{K}_1 \cdot \Phi_m \cdot \mathsf{I}_2$$

When the voltage drop is neglected due to the impedance of the stator winding, the magnetization flux will be:

$$\Phi_{\rm m} = K_2. \quad \frac{V_1}{f_1}$$

where: T : torque available on the shaft end (N.m)


 Φ_m : magnetization flux (Wb)

 I_2 : rotor current (A) (depends on the load)

 V_1 : rotor voltage (V)

k1 and k2: constants (depend on the material and on the machine design)

However, to operate the motor in a speed range it is not sufficient to change only the supply frequency. Also, the voltage amplitude must be proportionally changed to the frequency variation. Thus, the current flux and consequently the electromagnetic torque of the motor remain constant, while the slip is maintained. The change of the V/f variation rate is linear up to the base frequency (rated) of motor operation. Above this value, the voltage, that is equal to the rated motor voltage, remains constant and only the stator frequency is changed.

Thus, the region above the base frequency is referred to as field weakening, in which the flux decreases causing the motor torque decrease. The torque supplied by the motor remains constant up the base frequency of the operation, decreasing gradually when operating frequencies are increased.

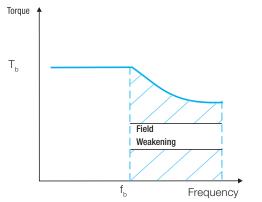
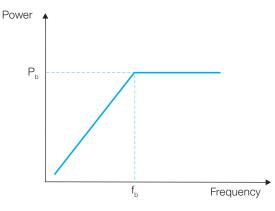



Figure 11.7

Since the output is proportional to torque multiplied by speed, the useful output power of the motor increases linearly up to the base frequency and from that point upwards it is maintained constant.

11.3.3 Characteristics of the Frequency Inverter

In order to obtain an output signal of desired voltage and frequency, the input signal must accomplish three stages within the frequency inverter:

- Diode bridge Rectification (converting AC to DC) voltage coming from the power supply;
- Filter or DC Link Regulation/smoothing of the rectified signal with storage in a capacitor bank;
- IGBT power transistors Inversion (converting AC to DC) of the DC link voltage by the Pulse-Width Modulation (PWM) technique. This modulation technique allows the output voltage/frequency variation by means of transistors (electronic switches) without interfering with the DC-voltage link.

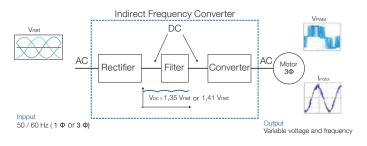


Figure 11.9

11.3.3.1 Control Types

There are basically two electronic inverter control types: scalar and vector.

The scalar control is based on the original concept of a frequency inverter: a signal of certain voltage/frequency ratio is imposed onto the motor terminals and this ratio is kept constant throughout a frequency range, in order to keep the magnetizing flux of the motor practically unchanged. It is generally applied when there is no need of fast responses to torque and speed commands and is particularly interesting when there are multiple motors connected to a single drive. The control is by open loop and the obtained speed precision is a function of the motor slip, which depends on the motor load. To improve the performance of the motor at low speeds, some drives use special functions such as slip compensation (attenuation of the speed variation as function of the load) and voltage boost (increase of the V/f ratio to compensate for the voltage drop due to the stator resistance and maintain the torque capacity of the motor) at low speeds.

Specification of Electric Motors | 59

This is the most used control type owing to its simplicity and also due to the fact that the majority of applications do not require high precision or fast responses during the speed control.

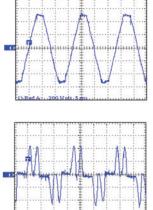
The vector control enables fast responses and high precision levels on the motor speed and torque control. Essentially the motor current is decoupled into two vectors: one to produce the magnetizing flux and the other to produce the torque, each one regulating the torque and the flux separately. The vector control can be realized by open loop (sensorless) or closed loop (feedback) control.

- Speed feedback a speed sensor (for instance, an incremental encoder) is required on the motor. This control mode provides great accuracy on both torque and speed of the motor even at very low (and zero) speeds.
- Sensorless control is simpler than the closed loop control, but its action is limited particularly to very low speeds. At higher speeds this control mode is practically as good as the feedback vector control.

11.3.3.2 Harmonics

For the AC power line, the system (frequency inverter + motor) is a non-linear load which current include harmonics. The characteristic harmonics generally produced by the rectifier are considered to be of order $h = np\pm 1$ on the AC side, thus, in the case of a 6 diode (6 pulses) bridge, the most pronounced generated harmonics are the 5th and the 7th ones, which magnitudes may vary from 10% to 40% of the fundamental component, depending on the power line impedance. In the case of rectifier bridges of 12 pulses (12 diodes), the most harmful harmonics generated are the 11th and the 13th ones. The higher the order of the harmonic, the lower can be considered its magnitude.

So higher order harmonics can be filtered more easily. The most commercially available drives have 6-pulses.


The harmonic distortion of the power system can be quantified by the THD (Total Harmonic Distortion), which is informed by the inverter manufacturer and is defined as:

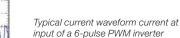
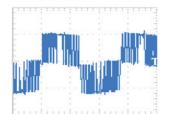
THD =
$$\sqrt{\sum_{h=2}^{\infty} \left(\frac{A_h}{A_1}\right)^2}$$

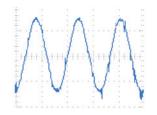
where: Ah : are the rms values of the non-fundamental harmonic components A1 : is the rms value of the fundamental component b : barmonic order

h : harmonic order

The IEEE Std.512 recommends maximum values for current harmonics generated by electric equipment. Most manufacturers of inverters take care during the design of their equipment to ensure that the THD limits established by this standard are fulfilled.

Typical voltage waveform at input of a PWM inverter with 6 pulses (frequency: 50 Hz or 60 Hz)


Figure 11.10

11.3.4 Inverter Influencing Motor Performance

Induction motors driven by PWM inverter are subjected to harmonics that can increase the losses and the temperature as well as the noise and vibration levels, when compared to the sinusoidal supply condition. The inverter influence on the motor depends on several factors related to the control, such as switching frequency, the effective pulse width, pulse number, among others.

Typical current waveform current at motor terminals fed by PWM voltage

Typical PWM voltage waveform at inverter output

Figure 11.11

There are basically the following solutions to mitigate the harmonics generated by a PWM frequency inverter: Installation of output filters (load reactance, dV/dt filters, sinusoidal filters, etc.), use of multi-level inverters (more sophisticated topology), Pulse Width Modulation quality improvement (optimization of pulse patterns) and increase of the switching frequency.

Furthermore, other effects may appear when induction motors are fed by inverters. Although not produced specifically by the harmonics, other important effects may appear and should not be neglected, such as dielectric stress of the insulation system and shaft currents that reduce bearing life.

Considerations regarding energy efficiency

The lack of international standards that specify test procedures to evaluate the system (motor + inverter) efficiency allows such tests to be carried out in many different ways. Therefore, the results obtained should not influence the acceptance (or not) of the motor, except under mutual accordance between customer and manufacturer, as specified by international standards. Experience shows the effectiveness of the considerations below:

- An induction motor fed by PWM voltage provides a lower efficiency level than when fed by purely sinusoidal voltage, due to the losses increase caused by harmonics.
- In applications of motors with frequency inverters, the whole system must be evaluated (inverter + motor), rather than the motor efficiency only.
- Each case must be properly analyzed, taking into account following characteristics: operating frequency, switching frequency, load conditions, motor power, THD supplied by the inverter, etc.
- Special measuring instruments must be used for the correct evaluation of electrical quantities (True RMS meters).
- Higher switching frequencies increase the motor efficiency and decrease the inverter efficiency.

Influence of the inverter on the temperature rise of the winding

Induction motors may heat up more when fed by frequency inverter than when fed by sinusoidal voltage supply. This higher temperature rise results from the motor losses' growth owing to the high harmonic components of the PWM signal and the often reduced heat transfer resulting from speed variation of selfventilated motors operating at low frequencies. Basically there are following solutions to prevent motor overheating:

- Rated torque derating (frame oversize);
- Use of independent cooling system;
- Utilization of the "Optimal Flux Solution" (exclusive to applications using WEG drives and motors).

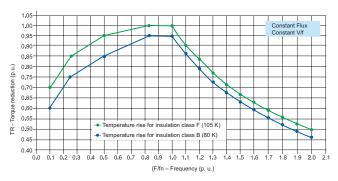
Criteria for torque derating

In order to keep the temperature rise of WEG motors, when supplied by PWM, within acceptable levels and the loadability, limits shown in Fig. 11.13 and 11.14 must be met.

Note: Motors rated for explosive atmospheres should be evaluated on a case by case basis - in such case please contact WEG.

Optimal flux condition

The "Optimal Flux" solution was developed for the purpose of making WEG induction motors able to operate at low speeds with constant torque loads still keeping an acceptable temperature rise level, without the need of neither oversizing the machine nor blower cooling it.


The study of the composition of the motor losses and their relation with the frequency, magnetic flux, current and the speed variation allowed the determination of an optimal flux condition for each speed.

The incorporation of the solution obtained for WEG CFW700 / CFW701 and CFW11 inverters allows a continuous mitigation of the motor losses throughout the whole operating range, which is performed automatically by the inverter.

Important!

This solution can only be used for variable torque loads or when applied above the base frequency and when:

- Class IE2 High-Efficiency or Class IE3 Premium Efficiency motors are used;
- The motor is fed by WEG frequency inverter
- (CFW11 or CFW700 / CFW701 version 2.40 or above);
- Sensorless vector control is used.

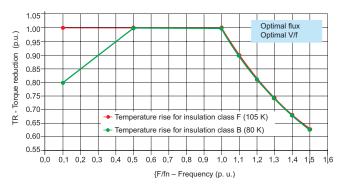


Figure 11.13 - Optimal flux condition

Modern frequency inverters use power transistors (typically IGBTs), whose switching process occurs at very high speed - at kHz frequencies. To achieve such switching, the transistors have very fast times for conducting initiation and blocking which result in voltage pulses with a high dV/dt (rate of voltage change over time). When squirrel cage induction motors are fed by frequency, those pulses combined with the cable and motor impedance may cause repetitive overvoltages (overshoots) at the motor terminals. This pulse train may degrade the motor insulation system and may hence reduce the motor lifetime. The overshoots affect especially the inter turn isolation of random winding and its value is determined primarily by following factors: rise time of the voltage pulse, cable length and type, minimum time between pulses, switching frequency and multi motor operation.

Criteria regarding the insulation system

When WEG low voltage induction motors are used with frequency inverters, the following criteria must be met to protect the insulation system of the motor: if any of the conditions below are not met, filters must be installed between the frequency inverter and the motor.

Note: motors rated for explosive atmospheres should be evaluated on a case by case basis - in such case please contact WEG.

Motor rated voltage	Voltage spikes at motor terminals (phase-phase)	dV/dt* at motor terminals (phase-phase)	Rise Time*	MTBP
$V_{_{ m NOM}} < 460 \text{ V}$	<u>≤</u> 1600 V	\leq 5200 V/µs		
$460 \text{ V} \le \text{V}_{_{NOM}} < 575 \text{ V}$	\leq 2000 V	\leq 6500 V/µs	\geq 0.1 µs	\geq 6 µs
$575~V \le V_{_{NOM}} \le 1000~V$	\leq 2400 V	\leq 7800 V/µs		

Table 11.4

* Definition in accordance with NEMA MG1- Part 30

The phenomenon of induced shaft voltage/current is caused fundamentally due to unbalanced waveforms present in the magnetic circuit of the motor. The usual causes of this problem that primarily affect large machines are eccentricities and other imperfection resulting from the manufacturing process. The advent of PWM inverters aggravated this problem, now occurring also with lower power machines, since the motors are now fed with unbalanced waveforms that have high frequency components. The causes of shaft induced voltage owing to the PWM inverters supply is added to those intrinsic voltages of the motor which also causes current circulation through the bearings.

The basic reason for bearing currents to occur within a PWM inverter fed motor is due to the common mode voltage. The high frequency of the common mode voltage generated by the frequency inverter ensures that the capacitive reactances within the motor become low, allowing the current to pass through the coupling formed by the rotor, shaft and bearing toward the earth.

Common mode voltage and motor equivalent circuit for high frequencies

The three-phase voltages supplied by the PWM inverter, different from the pure sinusoidal voltage, is not balanced, i.e., the vector sum of the instantaneous voltages at the three phases of the frequency inverter output is not equal to zero, but it is equal to an electric potential of high frequency. This high frequency common mode voltage may result in undesirable common mode currents. Existing stray capacitances between motor and earth may allow current flowing to the earth, passing through rotor, shaft and bearings and reaching the end shield (earthed).

The high frequency model of the motor equivalent circuit, in which the bearings are represented by capacitances shows the paths through which the common mode currents flow. At high speed operation there is no contact between the rotor and the (earthed) outer bearing raceway, due to the plain distribution of the grease. The electric potential of the rotor may then increase with respect to the earth until the dielectric strength of the grease film is disrupted, occurring voltage sparking and flow of discharge current through the bearings. This current that circulates whenever the grease film is momentarily broken down is often referred to as the "capacitive discharge component".

These discontinuous electric discharges wear the raceways and erode the rolling elements of the bearings, causing small superimposing punctures. Long term flowing discharge currents result in furrows (fluting), which reduce bearings life and may cause the premature machine failure. There is still another current component that circulates permanently through the characteristic conducting loop comprising the shaft, bearings, end shields and the housing/ frame, that is often called the conduction component.

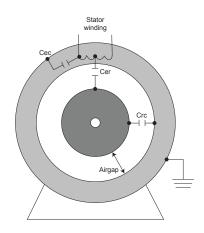


Figure 11.14 - Capacitive discharge current.

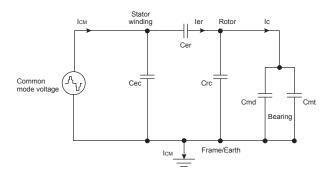


Figure 11.16 - Motor capacitance.

Equivalent circuit for high frequencies:

- Cer : capacitor formed by the stator winding and the rotor lamination
- C_{rc} : capacitor formed by rotor and stators cores
- C_{ec}^{rc} : capacitor formed by the stator winding and the frame
- C_{mdmt}^{\bullet} : capacitance of the DE/NDE bearings, formed by the inner and the outer bearing raceways with the metallic rolling elements
- : total common mode current
- : capacitive discharge current flowing from the stator to the rotor
- : capacitive discharge current flowing through the bearings

Protection criteria against bearing currents

When WEG low voltage three-phase induction motors are fed by frequency inverters, following criteria must be met for the bearing protection:

Note: motors rated for explosive atmospheres should be evaluated on a case by case basis - in such case please contact WEG.

	Line W22	
Frame size (IEC)	Standard	Optional
225 ≤ mod < 315	= No protected	 Insulated NDE bearing Insulated DE bearing Earthing system with brush between frame and NDE-shaft
315 and 355	 Insulated NDE bearing Earthing system with brush between frame and DE-shaft 	 Both bearings are insulated

Table 11.5 - Bearing protection

The rotating electrical machines have basically three noise sources: the ventilation system, the rolling bearings and the electromagnetic excitation. Bearings in perfect operating conditions produce practically despicable noise, in comparison with other sources of the noise generated by the motor.

In motor fed by sinusoidal supply, especially those with reduced number of poles (higher speeds), the main noise source is the ventilation system. On the other hand, in motors with higher number of poles and lower operation speeds often stands out the electromagnetic noise.

However, in variable speed drive systems, especially at low operating speeds when ventilation is reduced, the electromagnetically excited noise can be the main source of noise whatever the motor polarity, owing to the harmonic content of the voltage.

Criteria regarding the noise level

Results of laboratory tests (4 point measurements accomplished in semi-anechoic chamber with the frequency inverter installed outside the chamber) carried out with several WEG motors and frequency inverters using different switching frequencies have shown that WEG three-phase induction motors, when fed by PWM frequency inverters and operating at rated frequency (typically 50 or 60 Hz) present an increment in the sound pressure level of 11 dB(A) at most.

Notes:

O switching frequency increase tends to reduce the noise level of electromagnetic origin generated by the motor.

The noise criteria above apply only to motor frame sizes \leq 355.

For more information on VSD motor applications, visit our website (www.weg.net) and download the Technical Guide - Induction motors Fed by PWM (code 50029350).

12. Environmental Information

12.1 Packaging

WEG electric motors are supplied in cardboard, plastic, steel or wooden packaging. These materials can be recycled or reused. All wood used in the packaging of WEG motors comes from reforestation.

12.2 Product

As far as constructive aspects are concerned, electric motors are basically manufactured with ferrous metals (steel, cast iron), non-ferrous metals (copper, aluminum), and plastic. In general, the electric motor has long life cycle, however, when its disposal, WEG recommends that the packaging and the product materials are properly separated and sent for recycling. Non-recyclable materials should be properly disposed in landfills, co-processed or incinerated. Service providers of recycling, disposal, co-processing or incineration must be properly licensed by local environmental authorities to carry out these activities.

13. Tests

This chapter defines the witnessed or no witnessed tests that can be performed by WEG upon customer request.

As defined by IEC 60034-1, the tests are grouped in ROUTINE, TYPE and SPECIAL tests. The test procedures are specified in IEC 60034-2. Other tests not listed below can be performed by the manufacturer provided there is an agreement between the parties.

	List of tests									
	Description	Routine Test	Type test	Special test	According	g to Standard				
1	Winding resistance - cold	Х	Х		IEEE 112	IEC 60034-1				
2	Tests with locked rotor	Х	Х		IEEE 112	IEC 60034-1				
3	Temperature rise test	N.A.	Х		IEEE 112	IEC 60034-1				
4	Load test	N.A.	Х		IEEE 112	IEC 60034-2-1				
5	Breakdown torque test	N.A.	Х		IEEE 112	IEC 60034-1				
6	No-load test	Х	Х		IEEE 112	IEC 60034-2-1				
7	Mechanical Vibration -measurement	Optional	Optional	Х	NEMA MG1 Part 7	IEC 60034-14				
8	Noise level- measurement	Optional	Optional	Х	NEMA MG1 Part 9	IEC 60034-9				
9	High-potential test	Х	Х		IEEE 112	IEC 60034-1				
10	Insulation resistance test	Х	Х		IEEE 43	IEC 60204-1				
11	Polarization index	Optional	Optional	Х	IEEE 43	IEC 60204-1				
12	Speed-torque curve	N.A.	Optional	Х	IEEE 112	-				
13	Overspeed	Optional	Optional	Х	NEMA MG1 Part 12.52	IEC 60034-1				
14	Shaft voltage	Optional	Optional	Х	IEEE 112	-				
15	Bearing insulation resistance	Optional	Optional	Х	IEEE 112	-				
16	Momentary excess torque	Optional	Optional	Х	NEMA MG1	IEC60034-1				
17	Occasional excess current	Optional	Optional	Х	NEMA MG1 Part 12.48	IEC60034-2-1				

Note: N.A. - Not applicable Optional - upon request

13.1 Variable Frequency Drive Motors

When motors are driven by frequency inverters the tests are performed directly on the power line (sinusoidal voltage source) except for the temperature rise test that can be carried out with PWM supply, on request.

14. Appendix

14.1. International System of Units

Quantity	Name	Symbol
Acceleration	Meter squared per second	m/s ²
Angular acceleration	Radian per second squared	rad/s ²
Flat angle	Radian	rad
Solid angle	Steradian	sr
Area	Square meter	m ²
Specific heat	Joule per kilogram per kelvin	J/kgK
Capacitance	Farad	J/ KyK
Flow	Cubic meter per second	m³/s
Conductance	Siemens	S
Thermal conductivity	Watt per meter per kelvin	W/mK
Conductivity	Siemens per meter	S/m
Energy flux density	Watt per square meter	W/m ²
Absorbed dose	Joule per kilogram	J/kg
Energy	Joule	J
		J/K
Entropy	Joule per kelvin	
Mass flow	Kilogram per second Weber	kg/s Wb
Magnetic flux	Hertz	Hz
Frequency Force		
	Newton	N
Temperature gradient	Kelvin per meter	K/m
Impulsion	Newton-second	Ns
Magnetic induction	Tesla	Т
Inductance	Henri	Н
Electric field intensity	Volt per meter	V/m
Magnetic field intensity	Ampere per meter	A/m
Current intensity	Ampere	A
Frequency interval	Octave	
Length	Meter	m
Mass	Kilogram	kg
Specific mass	Kilogram/cubic meter	kg/m ³
Moment of force	Newton-meter	Nm
Moment of kinetic	kilogram-square meter-second	kgm ² /s
Moment of inertia	Kilogram/square meter	kgm ²
Power	Watt	W
Pressure	Newton per square meter	N/m ²
Reluctance	Ampere per Weber	A/Wb
Electric resistance	Ohm	Ω
Mass resistivity	Ohm-kilogram per square meter	Ωkg/m ²
Resistivity	Ohm-meter	Ωm
Thermodynamic	Kelvin	К
temperature	Vicit	N
Voltage	Volt Nouton par mater	V NI /m
Surface tension	Newton per meter	N/m
Time	Second	S rad/a
Angular speed	Radian per second	rad/s
Speed	Meter per second	m/s
Dynamic viscosity	Newton-second per square meter	Ns/m ²
Kinematic viscosity	Square meter per second	m²/s
Volume	Cubic meter	m ³

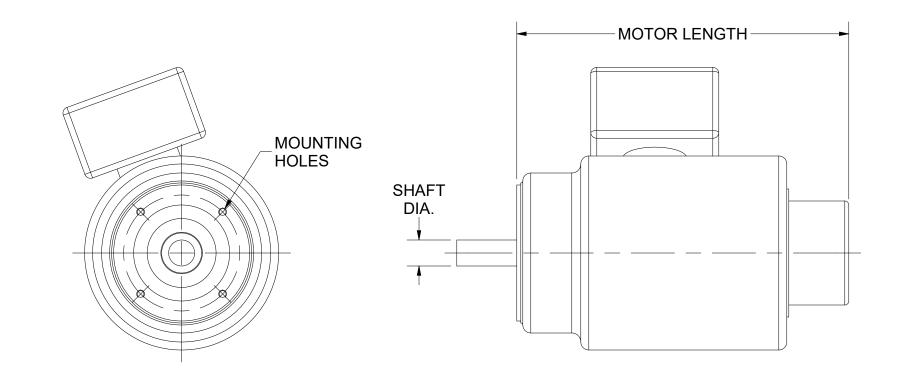
Table 14.1

14.2 Unit Convertion

From	Multiply by	To obtain
		leration
	1.000	Milimeter/second ² (mm/s ²)
Meter/second ² (m/s ²)	100	Centimeter/second ² (cm/s ²)
	3,280853	Foot/second ² (ft/s ²)
	2,23694	Mile/hour second (mi/(h.s))
Dadian (accord? (rad (o?)	<u> </u>	acceleration
Radian/second ² (rad/s ²) Radian/second ² (rad/s ²)	57,29577951 0,159154943	Degree per square second (°/s ²) Revolution per square second (s- ²)
Haulah/Second- (Tau/S-)		t angle
	57,2958	Trigonometric degree (°)
De die a (med)	3.437,748	Minute (')
Radian (rad)	206.264,900	Second (")
	0,1591551	rpm
		Area
	0,001482626	Acre (ac)
	60.000	Square centimeter (cm ²)
	64,58346	Square foot (ft ²)
Meter ² (m ²)	0,0006 9300,019	Hectare (ha) Square Inch (in ²)
	6x10 ⁻⁰⁶	Square kilometer (km²)
	2,32x10 ⁻⁰⁶	Square mile (mi ²)
	6.000.000	Square milimeter (mm ²)
	7,17594	Square yard (yd ²)
	Spec	ific heat
	0,000238846	Calorie (IT)/Gram/Celsius degree (cal/g/°C)
Joule per kilogram per kelvin	0,101971621	Kilogram-force meter/Kilogram/K (kgfm/kg/K)
(J/kgK)	0,185862535	Pound-force foot/pound/°R (lbf.ft/lb.°R)
	0,000238846	Btu (IT)/Pound/Fahrenheit degrees (BTU/lb/°F)
	0,000429923	Btu (IT)/Pound/Celsius degree (BTU/lb/°C) acitance
Farad	1	Coulomb/Volt (C/V)
1 4 4 4		Flow
	1.000	Liter per second (I/s)
	33.814,0227	Ounce per second (oz/s)
	1,307950619	Cubic yard per second (yd3/s)
Cubic meter per second (m ³ /s)	35,31466672	Cubic foot per second (ft ³ /s)
	61.023,74409	Cubic inch per second (in ³ /s)
	1.629,941563	Pound per second (lb/s)
	739,3290564	Kilogram per second (kg/s)
Siemens (S)	1	
Siemens (S)	1	Ampere per Volt (A/V)
	1	
Siemens (S) Watt per meter per kelvin (W/mK)	1 Thermal	Ampere per Volt (A/V) conductivity
	1 Thermal 0,002388459 0,001925964	Ampere per Volt (A/V) conductivity Calorie (IT)/Second/Centimeter/Celsius degrees (cal/s/cm/°C)
	1 Thermal 0,002388459 0,001925964 Cont 8,99x10 ⁺¹¹	Ampere per Volt (A/V) conductivity Calorie (IT)/Second/Centimeter/Celsius degrees (cal/s/cm/°C) Btu (IT) Inch/Second/Square foot/°F (BTU.in/s/ft²) ductivity Statmho/meter
Watt per meter per kelvin (W/mK)	1 Thermal 0,002388459 0,001925964 Conu 8,99x10+ ¹¹ Energy	Ampere per Volt (A/V) conductivity Calorie (TI)/Second/Centimeter/Celsius degrees (cal/s/cm/°C) Btu (IT) Inch/Second/Square foot/°F (BTU.in/s/ft²) fuctivity Statmho/meter flux density
Watt per meter per kelvin (W/mK)	1 Thermal 0,002388459 0,001925964 Conu 8,99x10 ⁺¹¹ Energy 0,00064516	Ampere per Volt (A/V) conductivity Calorie (TI)/Second/Centimeter/Celsius degrees (cal/s/cm/°C) Btu (IT) Inch/Second/Square foot/°F (BTU.in/s/ft²) ductivity Statmho/meter flux density Watt/square inch (W/in²)
Watt per meter per kelvin (W/mK)	1 Thermal 0,002388459 0,001925964 Cond 8,99x10 ⁻¹¹ Energy 0,00064516 1	Ampere per Volt (A/V) conductivity Calorie (T)/Second/Centimeter/Celsius degrees (cal/s/cm/°C) Btu (T) Inch/Second/Square foot/°F (BTU.in/s/tt²) ductivity Statmho/meter flux density Watt/square inch (W/in²) Joule/second/square meter (J/s.m²)
Watt per meter per kelvin (W/mK)	1 Thermal 0,002388459 0,001925964 Conu 8,99x10-11 Energy 0,00064516 1 0,000023901	Ampere per Volt (A/V) conductivity Calorie (IT)/Second/Centimeter/Celsius degrees (cal/s/cm/°C) Btu (IT) Inch/Second/Square foot/°F (BTU.in/s/ft²) ductivity Statmho/meter flux density Watt/square inch (W/in²) Joule/second/square meter (J/s.m²) Calorie (th)/second/square centimeter (cal/s/cm²)
Watt per meter per kelvin (W/mK)	1 Thermal 0,002388459 0,001925964 Cond 8,99x10 ⁻¹¹ Energy 0,00064516 1	Ampere per Volt (A/V) conductivity Calorie (T)/Second/Centimeter/Celsius degrees (cal/s/cm/°C) Btu (T) Inch/Second/Square foot/°F (BTU.in/s/tt²) ductivity Statmho/meter flux density Watt/square inch (W/in²) Joule/second/square meter (J/s.m²)
Watt per meter per kelvin (W/mK) Siemens per meter (S/m)	1 Thermal 0,002388459 0,001925964 Com 8,99x10 ⁻¹¹ Energy 0,00064516 1 0,000023901 3.600.000	Ampere per Volt (A/V) conductivity Calorie (IT)/Second/Centimeter/Celsius degrees (cal/s/cm/°C) Btu (IT) Inch/Second/Square foot/°F (BTU.in/s/ft²) ductivity Statmho/meter flux density Watt/square inch (W/in²) Joule/second/square meter (J/s.m²) Calorie (th)/second/square centimeter (cal/s/cm²) Dyne/hour/centimeter (dyn/h/cm)
Watt per meter per kelvin (W/mK) Siemens per meter (S/m)	1 Thermal 0,002388459 0,001925964 Com 8,99x10 ⁻¹¹ Energy 0,00064516 1 0,000023901 3.600.000 36.000 4,111305952 0,000126313	Ampere per Volt (A/V) conductivity Calorie (TI)/Second/Centimeter/Celsius degrees (cal/s/cm/°C) Btu (IT) Inch/Second/Square foot/°F (BTU.in/s/ft²) ductivity Statmho/meter flux density Watt/square inch (W/in²) Joule/second/square meter (J/s.m²) Calorie (th//second/square centimeter (cal/s/cm²) Dyne/hour/centimeter (dyn/h/cm) Erg/hour/square milimeter (erg/h/mm²) Foot pound/minute/square foot (lb.ft/min/ft²) Horsepower(metric)/square foot (lb.ft/mi2)
Watt per meter per kelvin (W/mK) Siemens per meter (S/m)	1 Thermal 0,002388459 0,001925964 Com 8,99X110 ⁻¹¹ Energy 0,00064516 1 0,000023901 3.600.000 36.000 4,111305952 0,000126313 0,000088055	Ampere per Volt (A/V) conductivity Calorie (TT)/Second/Centimeter/Celsius degrees (cal/s/cm/°C) Btu (IT) Inch/Second/Square foot/°F (BTU.in/s/ft²) ductivity Statmho/meter flux density Watt/square inch (W/in²) Joule/second/square meter (J/s.m²) Calorie (th)/second/square centimeter (cal/s/cm²) Dyne/hour/centimeter (dyn/h/cm) Erg/hour/square milimeter (erg/h/m²) Foot pound/minute/square foot (lb.ft/min/ft²) Horsepower(metric)/square foot (lb.ft/min/ft²) Btu (IT)/second/square foot (BTU/s/ft²)
Watt per meter per kelvin (W/mK) Siemens per meter (S/m)	1 Thermal 0,002388459 0,001925964 Com 8,99x10 ⁺¹¹ Energy 0,00064516 1 0,000023901 3,600.000 3,60.000 4,111305922 0,000126313 0,000088055 0,00000612	Ampere per Volt (A/V) conductivity Calorie (T)/Second/Centimeter/Celsius degrees (cal/s/cm/°C) Btu (T) Inch/Second/Square foot/°F (BTU.in/s/ft²) ductivity Statmho/meter flux density Watt/square inch (W/in²) Joule/second/square meter (J/s.m²) Calorie (th)/second/square centimeter (cal/s/cm²) Dyne/hour/centimeter (dyn/h/cm) Erg/hour/square milimeter (erg/h/mm²) Foot pound/minute/square foot (Hp/ft²) Horsepower(metric)/square foot (Hp/ft²) Btu (IT)/second/square foot (BTU/s/ft²) Btu (th)/second/square inch (BTU/s/in²)
Watt per meter per kelvin (W/mK) Siemens per meter (S/m)	1 Thermal 0,002388459 0,001925964 Conn 8,99x10+11 Energy 0,00064516 1 0,000023901 3.600.000 3.0000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.00000 3.0000 3.0000 3.0000 3.00000 3.00000 3.00000 3.00000 3.000000 3.0000000000	Ampere per Volt (A/V) conductivity Calorie (T)/Second/Centimeter/Celsius degrees (cal/s/cm/°C) Btu (T) Inch/Second/Square foot/°F (BTU.in/s/ft²) itutivity Statmho/meter flux density Watt/square inch (W/in²) Joule/second/square meter (J/s.m²) Calorie (th)/second/square meter (dyn/h/cm) Erg/hour/square milimeter (dyn/h/cm) Erg/hour/square milimeter (dyn/h/cm) Foot pound/minute/square foot (Hb/ft²) Horsepower(metric)/square foot (HD/ft²) Btu (TT)/second/square inch (BTU/s/ft²) Btu (th)/second/square inch (BTU/s/in²) bed dose
Watt per meter per kelvin (W/mK) Siemens per meter (S/m)	1 Thermal 0,002388459 0,001925964 Com 8,99x10 ⁻¹¹ Energy 0,00064516 1 0,000023901 3.600.000 3.600.000 4,111305952 0,000126313 0,000088055 0,0000126313 0,0000800512 Absor 100	Ampere per Volt (A/V) conductivity Calorie (T)/Second/Centimeter/Celsius degrees (cal/s/cm/°C) Btu (IT) Inch/Second/Square foot/°F (BTU.in/s/ft²) tuctivity Statmho/meter flux density Watt/square inch (W/in²) Joule/second/square meter (J/s.m²) Calorie (th)/second/square centimeter (cal/s/cm²) Dyne/hour/centimeter (dyn/h/cm) Erg/hour/square milimeter (erg/h/mm²) Foot pound/minute/square foot (Ib.ft/min/ft²) Horsepower(metric)/square foot (Ib.ft/min/ft²) Btu (IT)/second/square foot (BTU/s/ft²) Btu (th)/second/square inch (BTU/s/in²) bed dose rad
Watt per meter per kelvin (W/mK) Siemens per meter (S/m) Watt per square meter(W/m²)	1 Thermal 0,002388459 0,001925964 Com 8,99x10 ⁺¹¹ Energy 0,00064516 1 0,000023901 3.600.000 3.600.000 4,111305952 0,000126313 0,00008055 0,00000612 Absor 100 1	Ampere per Volt (A/V) conductivity Calorie (TI)/Second/Centimeter/Celsius degrees (cal/s/cm/°C) Btu (IT) Inch/Second/Square foot/°F (BTU.in/s/ft²) tuctivity Statmho/meter flux density Watt/square inch (W/in²) Joule/second/square meter (J/s.m²) Calorie (th)/second/square centimeter (cal/s/cm²) Calorie (th)/second/square contimeter (cal/s/cm²) Dyne/hour/centimeter (dyn/h/cm) Erg/hour/square milimeter (erg/h/mm²) Foot pound/minute/square foot (HD//ft²) Btu (TI)/second/square foot (BTU/s/ft²) Btu (th)/second/square inch (BTU/s/in²) bed dose rad Gray
Watt per meter per kelvin (W/mK) Siemens per meter (S/m) Watt per square meter(W/m²)	1 Thermal 0,002388459 0,001925964 Com 8,99x10 ⁺¹¹ Energy 0,00064516 1 0,000023901 3.600.000 3.600.000 4,111305952 0,000126313 0,00008055 0,00000612 Absor 100 1	Ampere per Volt (A/V) conductivity Calorie (T)/Second/Centimeter/Celsius degrees (cal/s/cm/°C) Btu (IT) Inch/Second/Square foot/°F (BTU.in/s/ft²) tuctivity Statmho/meter flux density Watt/square inch (W/in²) Joule/second/square meter (J/s.m²) Calorie (th)/second/square centimeter (cal/s/cm²) Dyne/hour/centimeter (dyn/h/cm) Erg/hour/square milimeter (erg/h/mm²) Foot pound/minute/square foot (Ib.ft/min/ft²) Horsepower(metric)/square foot (Ib.ft/min/ft²) Btu (IT)/second/square foot (BTU/s/ft²) Btu (th)/second/square inch (BTU/s/in²) bed dose rad
Watt per meter per kelvin (W/mK) Siemens per meter (S/m) Watt per square meter(W/m²)	1 Thermal 0,002388459 0,001925964 Com 8,99x10 ⁻¹¹ Energy 0,00064516 1 0,000023901 3,600,000 3,600,000 4,111305952 0,000126313 0,000088055 0,00000612 Absor 100 1 E	Ampere per Volt (A/V) conductivity Calorie (TI)/Second/Centimeter/Celsius degrees (cal/s/cm/°C) Btu (IT) Inch/Second/Square foot/°F (BTU.in/s/ft²) ductivity Statmho/meter flux density Watt/square inch (W/in²) Joule/second/square meter (J/s.m²) Calorie (th/second/square meter (cal/s/cm²) Dyne/hour/centimeter (dyn/h/cm) Erg/hour/square milimeter (erg/h/mm²) Foot pound/minute/square foot (BTU/s/ft²) Btu (TI)/second/square foot (BTU/s/ft²) Btu (th/second/square inch (BTU/s/ft²) Btu (th/second/square inch (BTU/s/in²) bed dose rad Gray tergy
Watt per meter per kelvin (W/mK) Siemens per meter (S/m) Watt per square meter(W/m²)	1 Thermal 0,002388459 0,001925964 Com 8,99X10 ⁻¹¹ Energy 0,00064516 1 0,000023901 3.600.000 4,111305952 0,000126313 0,000088055 0,00000612 Absor 100 1 Energy 0,000947817	Ampere per Volt (A/V) conductivity Calorie (TI)/Second/Centimeter/Celsius degrees (cal/s/cm/°C) Btu (IT) Inch/Second/Square foot/°F (BTU.in/s/ft²) ductivity Statmho/meter flux density Watt/square inch (W/in²) Joule/second/square meter (J/s.m²) Calorie (th)/second/square centimeter (cal/s/cm²) Dyne/hour/centimeter (dyn/h/cm) Erg/hour/square milimeter (eg/h/mm²) Foot pound/minute/square foot (Ib.ft/min/ft²) Horsepower(metric)/square foot (Ib.ft/min/ft²) Btu (IT)/second/square inch (BTU/s/ft²) Btu (th)/second/square inch (BTU/s/in²) bed dose rad Gray tergy BTU
Watt per meter per kelvin (W/mK) Siemens per meter (S/m) Watt per square meter(W/m²)	1 Thermal 0,002388459 0,001925964 Com 8,99x10 ⁺¹¹ Energy 0,00064516 1 0,000023901 3.600.000 3.600.000 3.600.000 4,111305952 0,000126313 0,00008055 0,00000612 Absor 100 1 Energy 0,000947817 0,2388459 1x10 ⁻⁰⁷ 6,24x10 ⁻¹⁸	Ampere per Volt (A/V) conductivity Calorie (TI)/Second/Centimeter/Celsius degrees (cal/s/cm/°C) Btu (IT) Inch/Second/Square foot/°F (BTU.in/s/ft²) ductivity Statmho/meter flux density Watt/square inch (W/in²) Joule/second/square meter (J/s.m²) Calorie (th)/second/square centimeter (cal/s/cm²) Dyne/hour/centimeter (dyn/hcm) Erg/hour/square milimeter (erg/h/mm²) Foot pound/minute/square foot (lb.ft/min/ft²) Horsepower(metric)/square foot (lb.ft/min/ft²) Btu (IT)/second/square foot (BTU/s/ft²) Btu (th)/second/square inch (BTU/s/in²) bed dose rad Gray Ergy BTU Calorie (cal)
Watt per meter per kelvin (W/mK) Siemens per meter (S/m) Watt per square meter(W/m²)	1 Thermal 0,002388459 0,001925964 Com 8,99x10 ⁺¹¹ Energy 0,00064516 1 0,000023901 0,000023901 3.600.000 3.6.000 4,111305952 0,000126313 0,00008055 0,00000612 Absor 100 1 E 0,000947817 0,2388459 1x10 ⁻⁰⁷ 6,24x10 ⁺¹⁸ 1x10 ⁻⁰⁷	Ampere per Volt (A/V) conductivity Calorie (TJ)/Second/Centimeter/Celsius degrees (cal/s/cm/°C) Btu (IT) Inch/Second/Square foot/°F (BTU.in/s/ft?) ductivity Statmho/meter flux density Watt/square inch (W/in?) Joule/second/square meter (J/s.m?) Calorie (th)/second/square centimeter (cal/s/cm?) Dyne/hour/centimeter (dyn/h/cm) Erg/hour/square millimeter (erg/h/m?) Foot pound/minute/square foot (Ib.ft/min/ft?) Horsepower(metric)/square foot (Ib.ft/min/ft?) Btu (TJ)/second/square foot (BTU/s/ft?) Btu (th)/second/square foot (BTU/s/ft?) Btu (th)/second/square inch (BTU/s/ft?) bed dose rad Gray ergy BTU Calorie (cal) Dyne-centimeter (dyn.cm) Electron volt (eV) Erg (erg)
Watt per meter per kelvin (W/mK) Siemens per meter (S/m) Watt per square meter(W/m²) Joule per kilogram (J/kg)	1 Thermal 0,002388459 0,001925964 Com 8,99x110 ⁻¹¹ Energy 0,00064516 1 0,000023901 3,600.000 3,600.000 3,600.000 4,111305952 0,000126313 0,000088055 0,00000612 Com Com Com Com Com Com Com Com	Ampere per Volt (A/V) conductivity Calorie (TI)/Second/Centimeter/Celsius degrees (cal/s/cm/°C) Btu (TI) Inch/Second/Square foot/°F (BTU.in/s/tf?) ductivity Statmho/meter flux density Watt/square inch (W/in?) Joule/second/square meter (J/s.m?) Calorie (th)/second/square centimeter (cal/s/cm²) Dyne/hour/centimeter (dyn/h/cm) Erg/hour/square milimeter (cg/n/hm²) Foot pound/minute/square foot (b.ft/min/tf²) Horsepower(metric)/square foot (BTU/s/tf²) Btu (tT)/second/square foot (BTU/s/tf²) Btu (tT)/second/square foot (BTU/s/tf²) Btu (tt)/second/square inch (bt)/second/square inch (bt)/se
Watt per meter per kelvin (W/mK) Siemens per meter (S/m) Watt per square meter(W/m²)	1 Thermal 0,002388459 0,001925964 Com 6,99X10+ ¹¹ Energy 0,00064516 1 0,000023901 3.600.000 3.600.000 3.600.000 4,111305952 0,000126313 0,000088055 0,00000612 Absor 100 1 E0,000947817 0,2388459 1x10 ⁻⁰⁷ 6,24x10 ⁻¹⁸ 1x10 ⁻⁰⁷ 2,78x10 ⁻⁴⁷ 10.197,16	Ampere per Volt (A/V) conductivity Calorie (TI)/Second/Centimeter/Celsius degrees (cal/s/cm/°C) Btu (TI) Inch/Second/Square foot/°F (BTU.in/s/ft?) ductivity Statmho/meter flux density Watt/square inch (W/in?) Joule/second/square meter (J/s.m?) Calorie (th)/second/square centimeter (cal/s/cm?) Dyne/hour/centimeter (dyn/h/cm) Erg/hour/square milimeter (erg/h/mm?) Foot pound/minute/square foot (ht/min/ft?) Horsepower(metric)/square foot (HP/ft?) Btu (TI)/second/square foot (BTU/s/ft?) Btu (TI)/second/square foot (BTU/s/ft?) Btu (TI)/second/square inch (BTU/s/ft?) Btu (TI)/second/square inch (BTU/s/ft?) Btu (TI)/second/square inch (BTU/s/ft?) Btu (TI)/second/square inch (BTU/s/ft?) Btu (Calorie (cal) Dyne-centimeter (dyn.cm) Electron volt (eV) Erg (erg) Kilowatt-hour (KWh) Gram force-centimeter (gf.cm)
Watt per meter per kelvin (W/mK) Siemens per meter (S/m) Watt per square meter(W/m²) Joule per kilogram (J/kg)	1 Thermal 0,002388459 0,001925964 Con 8,99x10 ⁻¹¹ Energy 0,00064516 1 0,000023901 3.600.000 3.6000 4,111305952 0,000126313 0,000088055 0,00000612 Absor 100 1 E 0,000947817 0,2388459 1x10 ⁻⁴⁰⁷ 6,24x10 ⁻¹⁸ 1x11 ⁰⁻⁴⁷ 2,78x10 ⁻⁴⁷ 10.197,16 3,73x10 ⁻⁴⁷	Ampere per Volt (A/V) conductivity Calorie (IT)/Second/Centimeter/Celsius degrees (cal/s/cm/°C) Btu (IT) Inch/Second/Square foot/°F (BTU.in/s/ft²) fuctivity Statmho/meter flux density Watt/square inch (W/in²) Joule/second/square meter (J/s.m²) Calorie (th)/second/square centimeter (cal/s/cm²) Dyne/hour/centimeter (dyn/h/cm) Erg/hour/square milimeter (erg/h/mm²) Foot pound/minute/square foot (bf.tf/min/ft²) Horsepower(metric)/square foot (BTU/s/ft²) Btu (IT)/second/square foot (BTU/s/ft²) Btu (IT)/second/square foot (BTU/s/ft²) Btu (IT)/second/square inch (BTU/s/ft²) Btu (IT)/second/squar
Watt per meter per kelvin (W/mK) Siemens per meter (S/m) Watt per square meter(W/m²) Joule per kilogram (J/kg)	1 Thermal 0,002388459 0,001925964 Com 8,99x10 ⁻¹¹ Energy 0,00064516 1 0,000023901 3.600.000 3.600.000 3.600.000 4,111305952 0,0000126313 0,000088055 0,00000612 Absor 100 1 Com 100 1 Com 100 1 Com 2,388459 1x10 ⁻⁰⁷ 6,24x10 ⁻¹⁸ 1x10 ⁻⁰⁷ 1,73x10 ⁻⁴⁷ 1,73x10 ⁻⁴⁷	Ampere per Volt (A/V) conductivity Calorie (TJ)/Second/Centimeter/Celsius degrees (cal/s/cm/*C) Btu (IT) Inch/Second/Square foot/*F (BTU.in/s/ft?) ductivity Statmho/meter flux density Watt/square inch (W/in?) Joule/second/square centimeter (cal/s/cm?) Dyne/hour/centimeter (dyn/h/cm) Erg/hour/square contimeter (cal/s/cm?) Foot pound/minute/square foot (Ib.ft/min/ft?) Horsepower(metric)/square foot (Ib.ft/min/ft?) Btu (IT)/second/square inch (BTU/s/ft?) Btu (IT)/second/square foot (BTU/s/ft?) Btu (IT)/second/square foot (BTU/s/ft?) Btu (IT)/second/square foot (BTU/s/ft?) Btu (BTU Calorie (cal) Dyne-centimeter (dyn.cm) Electron volt (eV) Erg (erg) Kilowatt-hour (kWh) Gram force-centimeter (gf.cm) Horsepower-hour (HEh) Newton-meter (N.m)
Watt per meter per kelvin (W/mK) Siemens per meter (S/m) Watt per square meter(W/m²) Joule per kilogram (J/kg)	1 Thermal 0,002388459 0,001925964 Com 8,99x10 ⁺¹¹ Energy 0,00064516 1 0,000023901 3.600.000 3.6000 4,111305952 0,000126313 0,00008055 0,00000612 Absor 100 1 E0 0,000947817 0,2388459 1x10 ⁻⁰⁷ 6,24x10 ⁻¹⁸ 1x10 ⁻⁰⁷ 2,78x10 ⁻⁶⁷ 1.110 ⁻¹⁷ 1.197,16	Ampere per Volt (A/V) conductivity Calorie (TJ)/Second/Centimeter/Celsius degrees (cal/s/cm/*C) Btu (IT) Inch/Second/Square foot/*F (BTU.in/s/ft?) fuctivity Statmho/meter flux density Watt/square inch (W/in?) Joule/second/square meter (J/s.m?) Calorie (th)/second/square centimeter (cal/s/cm?) Dyne/hour/centimeter (dyn/h/cm) Erg/hour/square milimeter (egr/h/m?) Foot pound/minute/square foot (lb.ft/min/ft?) Horsepower/metric)/square foot (lb.ft/min/ft?) Btu (TJ/second/square inch (BTU/s/in?) Btu (TJ/second/square foot (BTU/s/in?) bed dose rad Gray tergy BTU Calorie (cal) Dyne-centimeter (dyn.cm) Electron volt (eV) Erg (erg) Kilowatt-hour (KWh) Gram force-centimeter (gf.cm) Horsepower-hour (HP.h) Newton-meter (N.m) Ounce force-inch (ozf.in)
Watt per meter per kelvin (W/mK) Siemens per meter (S/m) Watt per square meter(W/m²) Joule per kilogram (J/kg)	1 Thermal 0,002388459 0,001925964 Com 8,99x10 ⁻¹¹ Energy 0,00064516 1 0,000023901 3.600.000 3.600.000 3.600.000 4,111305952 0,0000126313 0,000088055 0,00000612 Absor 100 1 Com 100 1 Com 100 1 Com 2,388459 1x10 ⁻⁰⁷ 6,24x10 ⁻¹⁸ 1x10 ⁻⁰⁷ 1,73x10 ⁻⁴⁷ 1,73x10 ⁻⁴⁷	Ampere per Volt (A/V) conductivity Calorie (TJ)/Second/Centimeter/Celsius degrees (cal/s/cm/*C) Btu (IT) Inch/Second/Square foot/*F (BTU.in/s/ft?) fuctivity Statmho/meter flux density Watt/square inch (W/in?) Joule/second/square meter (J/s.m?) Calorie (th)/second/square centimeter (cal/s/cm?) Dyne/hour/centimeter (dyn/h/cm) Erg/hour/square milimeter (erg/h/m?) Foot pound/minute/square foot (lb.ft/min/ft?) Horsepower(metric)/square foot (lb.ft/min/ft?) Btu (TJ)/second/square foot (BTU/s/ft?) Btu (tTJ)/second/square foot (BTU/s/ft?) Btu (tTJ)/second/square inch (BTU/s/ft?) Btu (tTJ)/second/square inch (BTU/s/ft?) Btu (tTJ)/second/square inch (BTU/s/ft?) Btu (ETG) Btu
Watt per meter per kelvin (W/mK) Siemens per meter (S/m) Watt per square meter(W/m²) Joule per kilogram (J/kg)	1 Thermal 0,002388459 0,001925964 Com 8,99x10 ⁻¹¹ Energy 0,00064516 1 0,000023901 3.600.000 3.6.000 4,111305952 0,000126313 0,00008055 0,00000612 0 Absor 100 1 E 0,000947817 0,2388459 1x10 ⁻⁰⁷ 6,24x10 ⁻¹⁸ 1x10 ⁻⁰⁷ 6,24x10 ⁻¹⁸ 1x10 ⁻⁰⁷ 1,373x10 ⁻⁴⁷ 1,373x10 ⁻⁴⁷ 1,373x10 ⁻⁴⁷ 1,373x10 ⁻⁴⁷ 1,373x10 ⁻⁴⁷ 1,373x10 ⁻⁴⁷ 1,41,6119 8,850746	Ampere per Volt (A/V) conductivity Calorie (TJ)/Second/Centimeter/Celsius degrees (cal/s/cm/*C) Btu (IT) Inch/Second/Square foot/*F (BTU.in/s/ft?) fuctivity Statmho/meter flux density Watt/square inch (W/in?) Joule/second/square meter (J/s.m?) Calorie (th)/second/square centimeter (cal/s/cm?) Dyne/hour/centimeter (dyn/h/cm) Erg/hour/square milimeter (egr/h/m?) Foot pound/minute/square foot (lb.ft/min/ft?) Horsepower/metric)/square foot (lb.ft/min/ft?) Btu (TJ/second/square inch (BTU/s/in?) Btu (TJ/second/square foot (BTU/s/in?) bed dose rad Gray tergy BTU Calorie (cal) Dyne-centimeter (dyn.cm) Electron volt (eV) Erg (erg) Kilowatt-hour (KWh) Gram force-centimeter (gf.cm) Horsepower-hour (HP.h) Newton-meter (N.m) Ounce force-inch (ozf.in)
Watt per meter per kelvin (W/mK) Siemens per meter (S/m) Watt per square meter(W/m²) Joule per kilogram (J/kg)	1 Thermal 0,002388459 0,001925964 Con 8,99x10 ⁻¹¹ Energy 0,00064516 1 0,000023901 3.600.000 3.6.000 4,111305952 0,000126313 0,000088055 0,000126313 0,00000612 Absor 100 1 E 0,000947817 0,2388459 1x10 ⁻⁶⁷ 2,78x10 ⁻⁶⁷ 1,0.197,16 3,73x10 ⁻⁶⁷ 1 141,6119 8,850746 0,7375621 1	Ampere per Volt (A/V) conductivity Calorie (TI)/Second/Centimeter/Celsius degrees (cal/s/cm/*C) Btu (TI) Inch/Second/Square foot/*F (BTU.in/s/tf?) fuctivity Statmho/meter flux density Watt/square inch (W/in?) Joule/second/square meter (J/s.m?) Calorie (th)/second/square centimeter (cal/s/cm?) Dyne/hour/centimeter (dyn/h/cm) Erg/hour/square milimeter (erg/h/mm?) Foot pound/minute/square foot (bf.t/min/tf?) Horsepower(metric)/square foot (BTU/s/tf?) Btu (TI)/second/square foot (BTU/s/tf?) Btu (TI)/second/square inch (BTU/s/tf?) Btu (TI)/second/square inch (BTU/s/tf?) Btu (TI)/second/square inch (BTU/s/tf?) Btu (TI)/second/square inch (BTU/s/tf?) Btu (Elsectron volt (eV) Erg (erg) Kilowatt-hour (kWh) Gram force-centimeter (df.cm) Horsepower-hour (HP.h) Newton-meter (N.m) Ounce force-inch (bf.in) Pound force-inch (lbf.in)
Watt per meter per kelvin (W/mK) Siemens per meter (S/m) Watt per square meter(W/m²) Joule per kilogram (J/kg)	1 Thermal 0,002388459 0,001925964 Com 8,99x10 ⁺¹¹ Energy 0,00064516 1 0,000023901 3.600.000 3.600.000 3.600.000 4,111305952 0,000126313 0,00008055 0,00000612 0,000047817 10.2388459 1x10 ⁻⁰⁷ 6,24x10 ⁻¹⁸ 1x10 ⁻⁰⁷ 2,78x10 ⁻⁴⁷ 1,778x10 ⁻⁴⁷ 1,73x10 ⁻⁴⁷ 1,73x10 ⁻⁴⁷ 1,73x10 ⁻⁴⁷ 1,73x50 ⁻⁴¹ 1,73x50 ⁻⁴² 1 1 1 1 1 1 1 1 1 1 1 1 1	Ampere per Volt (A/V) conductivity Calorie (T)/Second/Centimeter/Celsius degrees (cal/s/cm/°C) Btu (IT) Inch/Second/Square foot/°F (BTU.in/s/ft²) tuctivity Statmho/meter flux density Watt/square inch (W/in²) Joule/second/square meter (J/s.m²) Calorie (th)/second/square centimeter (cal/s/cm²) Calorie (th)/second/square centimeter (cal/s/cm²) Dyne/hour/centimeter (dyn/h/cm) Erg/hour/square milimeter (erg/h/mm²) Foot pound/minute/square foot (B.ft/min/ft²) Horsepower(metric)/square foot (BTU/s/ft²) Btu (T)/second/square foot (BTU/s/ft²) Btu (T)/second/square inch (BTU/s/in²) Btu (T)/second/square inch (BTU/s/in²) bed dose rad Gray tergy BTU Calorie (cal) Dyne-centimeter (dyn.cm) Electron volt (eV) Erg (erg) Kilowatt-hour (kNh) Gram force-centimeter (gf.cm) Horsepower-hour (HP.h) Newton-meter (M.m) Ounce force-inch (lbf.in) Pound force-foot (lbf.ft) Watt-second (Ws) tropy Boltzmann constant (k(B))
Watt per meter per kelvin (W/mK) Siemens per meter (S/m) Watt per square meter (W/m²) Joule per kilogram (J/kg) Joule (J)	1 Thermal 0,002388459 0,001925964 Com 8,99x10+11 Energy 0,00064516 1 0,000023901 3,600,000 3,600,0 4,111305952 0,000126313 0,00008055 0,00000612 0,000000612 0,000000612 0,000000612 0,000047817 0,2388459 1x10+07 10,0238459 1x10+07 6,24x10+18 1x10+07 10,238459 1x10+07 10,197,16 3,73x10+7 11,19 8,850746 0,7375621 1 141,6119 8,850746 0,7375621 1 E 7,24x10+22 2,39x10+3	Ampere per Volt (A/V) conductivity Calorie (T)/Second/Centimeter/Celsius degrees (cal/s/cm/°C) Btu (IT) Inch/Second/Square foot/°F (BTU.in/s/ft²) tuctivity Statmho/meter flux density Watt/square inch (W/in²) Joule/second/square meter (J/s.m²) Calorie (th)/second/square meter (cal/s/cm²) Calorie (th)/second/square centimeter (cal/s/cm²) Dyne/hour/centimeter (dyn/h/cm) Erg/hour/square milimeter (erg/h/mm²) Foot pound/minute/square foot (HD/ft²) Btu (T)/second/square foot (BTU/s/ft²) Btu (T)/second/square foot (BTU/s/ft²) Btu (T)/second/square inch (BTU/s/in²) bed dose rad Gray tergy BTU Calorie (cal) Dyne-centimeter (dyn.cm) Electron volt (eV) Erg (erg) Kilowatt-hour (kWh) Gram force-centimeter (gl.cm) Horsepower-hour (HP:h) Newton-meter (M.m) Ounce force-inch (ozf.in) Pound force-foot (Ibf.ft) Watt-second (Ws) tropy Boltzmann constant (k(B)) Calories/Kelvin (cal/K)
Watt per meter per kelvin (W/mK) Siemens per meter (S/m) Watt per square meter(W/m²) Joule per kilogram (J/kg)	1 Thermal 0,002388459 0,001925964 Com 8,99x110 ⁻¹¹ Energy 0,00064516 1 0,000023901 3.600.000 4,111305952 0,000126313 0,00008055 0,0000126313 0,00008055 0,0000126313 0,00008055 0,00000612 Com 100 Com 11 Com 100	Ampere per Volt (A/V) conductivity Calorie (TI)/Second/Centimeter/Celsius degrees (cal/s/cm/°C) Btu (TI) Inch/Second/Square foot/°F (BTU.in/s/ft²) tuctivity Statmho/meter flux density Watt/square inch (W/in²) Joule/second/square meter (J/s.m²) Calorie (th)/second/square centimeter (cal/s/cm²) Dyne/hour/centimeter (dyn/h/cm) Erg/hour/square milimeter (erg/h/mm²) Foot pound/minute/square foot (BTU/s/ft²) Btu (TI)/second/square foot (BTU/s/ft²) Btu (TI)/second/square inch (BTU/s/ft²) Btu (TI)/second/square foot (BTU/s/ft²) Btu (TI)/second/square foot (BTU/s/ft²) Btu (TI)/second/square foot (BTU/s/ft²) Btu (TI)/second/square foot (BTU/s/ft²) Btu (TI)/second/square inch (BTU/s/in²) bed dose rad Gray tergy BTU Calorie (cal) Dyne-centimeter (dyn.cm) Electron volt (eV) Erg (erg) Kilowatt-hour (kWh) Gram force-centimeter (gf.cm) Horsepower-hour (HP.h) Newton-meter (M.m) Ounce force-inch (ozf.in) Pound force-foot (Ibf.ft) Watt-second (Ws) tropy Boltzmann constant (k(B)) Calories/Kelvin (cal/K) Clausius (Cl)
Watt per meter per kelvin (W/mK) Siemens per meter (S/m) Watt per square meter (W/m²) Joule per kilogram (J/kg) Joule (J)	1 Thermal 0,002388459 0,001925964 Com 8,99x10+11 Energy 0,00064516 1 0,000023901 3,600,000 3,600,0 4,111305952 0,000126313 0,00008055 0,00000612 0,000000612 0,000000612 0,000000612 0,000047817 0,2388459 1x10+07 10,0238459 1x10+07 6,24x10+18 1x10+07 10,238459 1x10+07 10,197,16 3,73x10+7 11,19 8,850746 0,7375621 1 141,6119 8,850746 0,7375621 1 E 7,24x10+22 2,39x10+3	Ampere per Volt (A/V) conductivity Calorie (T)/Second/Centimeter/Celsius degrees (cal/s/cm/°C) Btu (IT) Inch/Second/Square foot/°F (BTU.in/s/ft²) tuctivity Statmho/meter flux density Watt/square inch (W/in²) Joule/second/square meter (J/s.m²) Calorie (th)/second/square meter (cal/s/cm²) Calorie (th)/second/square centimeter (cal/s/cm²) Dyne/hour/centimeter (dyn/h/cm) Erg/hour/square milimeter (erg/h/mm²) Foot pound/minute/square foot (HD/ft²) Btu (T)/second/square foot (BTU/s/ft²) Btu (T)/second/square foot (BTU/s/ft²) Btu (T)/second/square inch (BTU/s/in²) bed dose rad Gray tergy BTU Calorie (cal) Dyne-centimeter (dyn.cm) Electron volt (eV) Erg (erg) Kilowatt-hour (kWh) Gram force-centimeter (gl.cm) Horsepower-hour (HP:h) Newton-meter (M.m) Ounce force-inch (ozf.in) Pound force-foot (Ibf.ft) Watt-second (Ws) tropy Boltzmann constant (k(B)) Calories/Kelvin (cal/K)

From	Multiply by	To obtain
		ss flow
Kilogram per second (kg/s)	0,001	Ton (metric)/second (t/s)
	2,204622622	Pound/second (lb/s)
		netic flux
	1	Volt second (V.s)
	7.957.747,155	Unit pole
	100	Megaline
Weber (Wb)	100.000.000	Maxwell (Mx)
	1	Tesla square meter (T.m ²)
	100.000.000	Gauss square centimeter (G.cm ²)
	4,84x10+14	Magnetic flux quantum
		quency
Hertz (Hz)	1	Cycle/second
		orce
	100.000	Dyne (dyn)
Nouton (N)	101,9716	Gram force (gf)
Newton (N)	0,1019716	Kilogram force (kgf)
	3,596943	Ounce-force (ozf)
	0,2248089	Pound-force (lbf) ture gradient
Kelvin per meter (K/m)	0,9144	Kelvin per Yard (K/yd) Kelvin per Foot (K/ft)
Kelvin per meter (K/m)	0,3048	
	0,0254	Kelvin per Inch (K/in)
	Magnet	ic induction Weber/square meter (Wb/m²)
	0,00064516	Weber/square meter (wb/m²) Weber/square inch (Wb/in²)
	1	
Tesla (T)	· ·	Maxwell/square meter (Mx/m²)
	64.516	Maxwell/square inch (Mx/in ²)
	10.000	Gauss (G)
	1.000.000.000	Gamma
Users (II)		Internet
Henry (H)	1	Weber/Ampere (Wb/A ²)
		Vetterst 0/6-)
Volt per meter (V/m)	0,0254	Volt/Inch (V/in)
	1	Newton/Coulomb (N/C)
Ampara nor mater (A/m)		field intensity
Ampere per meter (A/m)	0.012566371	Oersted (Oe)
	,	
	Curren	t intensity
Ampere (A)	Curren 0,1	t intensity Biot (Bi)
	Curren 0,1	t intensity Biot (Bi) angth
	Curren 0,1 2,28083	t intensity Biot (Bi) ength Foot (ft)
	Curren 0,1 1 3,28083 0,00497097	t intensity Biot (Bi) ength Foot (ft) Furlong (fur)
	Curren 0,1 1,28083 0,00497097 39,36996	t intensity Biot (Bi) ength Foot (ft) Furlong (fur) Inch (in)
	Curren 0,1 3,28083 0,00497097 39,36996 1,05702x10 ⁻¹⁶	t intensity Biot (Bi) ength Foot (ft) Furlong (fur) Inch (in) Lightyear (ly)
Ampere (A)	Curren 0,1 3,28083 0,00497097 39,36996 1,05702x10 ⁻¹⁶ 0,000621371	t intensity Biot (Bi) ength Foot (ft) Furlong (fur) Inch (in) Lightyear (ly) Mile (mi)
Ampere (A)	Curren 0,1 3,28083 0,00497097 39,36996 1,05702x10 ⁻¹⁶ 0,000621371 0,000539957	t intensity Biot (Bi) ength Foot (ft) Furlong (fur) Inch (in) Lightyear (ly) Mile (mi) Nautical mile (M)
Ampere (A)	Curren 0,1 3,28083 0,00497097 39,36996 1,05702x10 ⁻¹⁶ 0,000621371 0,000539957 3,24078x10 ⁻¹⁷	t intensity Biot (Bi) ength Foot (ft) Furlong (fur) Inch (in) Lightyear (ly) Mile (mi) Nautical mile (M) Parsec (pc)
Ampere (A)	Curren 0,1 3,28083 0,00497097 39,36996 1,05702x10 ⁻¹⁶ 0,000621371 0,000539957 3,24078x10 ⁻¹⁷ 1,09361	t intensity Biot (Bi) ength Foot (ft) Furlong (fur) Inch (in) Lightyear (ly) Mile (mi) Nautical mile (M) Parsec (pc) Yard (yd)
Ampere (A)	Curren 0,1 3,28083 0,00497097 39,36996 1,05702x10 ⁻¹⁶ 0,000621371 0,000621371 1,09361	t intensity Biot (Bi) ength Foot (ft) Inch (in) Lightyear (ly) Mile (mi) Nautical mile (M) Parsec (pc) Yard (yd) Mass
Ampere (A)	Curren 0,1 1,28083 0,00497097 39,36996 1,05702x10 ⁻¹⁶ 0,000621371 0,000539957 3,24078x10 ⁻¹⁷ 1,09361 5.000	t intensity Biot (Bi) ength Foot (ft) Furlong (fur) Inch (in) Lightyear (ly) Mile (mi) Nautical mile (M) Parsec (pc) Yard (yd) Aass Carat (ct)
Ampere (A)	Curren 0,1 1 3,28083 0,00497097 39,36996 1,05702x10 ⁻¹⁶ 0,000621371 0,000539957 3,24078x10 ⁻¹⁷ 1,09361 5.000 15.432,4	t intensity Biot (Bi) angth Foot (ft) Furlong (fur) Inch (in) Lightyear (ly) Mile (mi) Nautical mile (M) Parsec (pc) Yard (yd) Aass Carat (ct) Grain (gr)
Ampere (A)	Curren 0,1 3,28083 0,00497097 33,36996 1,05702x10 ⁻¹⁶ 0,000621371 0,000539957 3,24078x10 ⁻¹⁷ 1,09361 5.000 15.432,4 35,27392	t intensity Biot (Bi) ength Foot (ft) Furlong (fur) Inch (in) Lightyear (ly) Mile (mi) Nautical mile (M) Parsec (pc) Yard (yd) Mass Carat (ct) Grain (gr) Ounce (avdp) (oz)
Ampere (A) Meter (m)	Curren 0,1 3,28083 0,00497097 39,36996 1,05702x10 ⁻¹⁶ 0,000621371 0,000539957 3,24078x10 ⁻¹⁷ 1,09361 5,000 15,432,4 35,27392 32,1505	t intensity Biot (Bi) ength Foot (ft) Furlong (fur) Inch (in) Lightyear (ly) Mile (mi) Nautical mile (M) Parsec (pc) Yard (yd) Aass Carat (ct) Grain (gr) Ounce (avdp) (oz)
Ampere (A)	Curren 0,1 3,28083 0,00497097 39,36996 1,05702x10 ⁻¹⁶ 0,000621371 0,000539957 3,24078x10 ⁻¹⁷ 1,09361 0,000539957 3,24078x10 ⁻¹⁷ 1,09361 0,000539957 3,24078x10 ⁻¹⁷ 1,09361 0,000539957 3,24078x10 ⁻¹⁷ 2,20462	t intensity Biot (Bi) ength Foot (ft) Furlong (fur) Inch (in) Lightyear (ly) Malte (mi) Nautical mile (M) Parsec (pc) Yard (yd) Mass Carat (ct) Grain (gr) Ounce (avdp) (oz) Ounce (troy) (ozt) Pound (lb)
Ampere (A) Meter (m)	Curren 0,1 1,3,28083 0,00497097 39,36996 1,05702x10 ⁻¹⁶ 0,000621371 0,000539957 3,24078x10 ⁻¹⁷ 1,09361 1,432,4 15,27392 32,1505 2,20462 0,1574728	t intensity Biot (Bi) Ength Foot (ft) Inch (in) Lightyear (ly) Mile (mi) Nautical mile (M) Parsec (pc) Yard (yd) Aass Carat (ct) Grain (gr) Ounce (avdp) (oz) Ounce (troy) (ozt) Pound (lb) Stone (st)
Ampere (A) Meter (m)	Curren 0,1 1,3,28083 0,00497097 39,36996 1,05702x10 ⁻¹⁶ 0,000621371 0,000539957 3,24078x10 ⁻¹⁷ 1,09361 5.000 15.432,4 35,27392 32,1505 2,20462 0,1574728 0,0009842	t intensity Biot (Bi) Angth Foot (ft) Furlong (fur) Inch (in) Lightyear (ly) Mile (mi) Nautical mile (M) Parsec (pc) Yard (yd) Aass Carat (ct) Grain (gr) Ounce (avdp) (oz) Ounce (avdp) (oz) Pound (lb) Stone (st) Ton (long)
Ampere (A) Meter (m)	Curren 0,1 3,28083 0,00497097 39,36996 1,05702x10 ⁻¹⁶ 0,000621371 0,000539957 3,24078x10 ⁻¹⁷ 1,09361 5.000 15.432,4 35,27392 32,1505 2,20462 0,1574728 0,0009842 0,0011023	t intensity Biot (Bi) angth Foot (ft) Furlong (fur) Inch (in) Lightyear (ly) Mile (mi) Nautical mile (M) Parsec (pc) Yard (yd) Aass Carat (ct) Grain (gr) Ounce (avdp) (oz) Ounce (troy) (ozt) Pound (lb) Stone (st) Ton (long) Ton (short) (tn)
Ampere (A) Meter (m)	Curren 0,1 3,28083 0,00497097 33,36996 1,05702x10 ⁻¹⁶ 0,000621371 0,000539957 3,24078x10 ⁻¹⁷ 1,09361 5,000 15,432,4 35,27392 32,1505 2,20462 0,1574728 0,0009842 0,0011023 0,001	t intensity Biot (Bi) ength Foot (ft) Furlong (fur) Inch (in) Lightyear (ly) Mile (mi) Nautical mile (M) Parsec (pc) Yard (yd) Mass Carat (ct) Grain (gr) Ounce (avdp) (oz) Ounce (roy) (ozt) Pound (lb) Stone (st) Ton (long) Ton (short) (tn)
Ampere (A) Meter (m)	Curren 0,1 3,28083 0,00497097 33,36996 1,05702x10 ⁻¹⁶ 0,000621371 0,000539957 3,24078x10 ⁻¹⁷ 1,09361 5,000 15,432,4 35,27392 32,1505 2,20462 0,1574728 0,0009842 0,0011023 0,001 Spec	t intensity Biot (Bi) ength Foot (ft) Furlong (fur) Inch (in) Lightyear (ly) Mile (mi) Nautical mile (M) Parsec (pc) Yard (yd) Mass Carat (ct) Grain (gr) Ounce (avdp) (oz) Ounce (avdp) (oz) Ounce (troy) (ozt) Pound (lb) Stone (st) Ton (long) Ton (short) (tn) Tonne (metric ton) (t)
Ampere (A) Meter (m)	Curren 0,1 1,3,28083 0,00497097 39,36996 1,05702x10 ⁻¹⁶ 0,000621371 0,000539957 3,24078x10 ⁻¹⁷ 1,09361 5.000 15.432,4 35,27392 32,1505 2,20462 0,1574728 0,0009842 0,0011023 0,001 Spec 0,000001	t intensity Biot (Bi) Ength Foot (ft) Furlong (fur) Inch (in) Lightyear (ly) Mile (mi) Nautical mile (M) Parsec (pc) Yard (lyd) Mass Carat (ct) Grain (gr) Ounce (avdp) (oz) Ounce (troy) (ozt) Pound (lb) Stone (st) Ton (short) (tn) Tonn (short) (tn) Tonne (metric ton) (t) ffic mass Gram/Cubic milimeter (g/mm ^a)
Ampere (A) Meter (m)	Curren 0,1 1,3,28083 0,00497097 3,9,36996 1,05702x10 ⁻¹⁶ 0,000621371 0,000539957 3,24078x10 ⁻¹⁷ 1,09361 1,09361 1,09361 1,09361 2,20462 0,1574728 0,0009842 0,0011023 0,001 5,9pec 0,000001 0,0000001	t intensity Biot (Bi) Ength Foot (ft) Furlong (fur) Inch (in) Lightyear (ly) Mile (mi) Nautical mile (M) Parsec (pc) Yard (yd) Aass Carat (ct) Grain (gr) Ounce (avdp) (oz) Ounce (troy) (ozt) Pound (lb) Stone (st) Ton (long) Ton (short) (tn) Tonne (metric ton) (t) ffic mass Gram/Cubic entilmeter (kg/cm³)
Ampere (A) Meter (m) Kilogram (kg)	Curren 0,1 1 3,28083 0,00497097 39,36996 1,05702x10 ⁻¹⁶ 0,000621371 0,000539957 3,24078x10 ⁻¹⁷ 1,09361 5.000 15.432,4 35,27392 32,1505 2,20462 0,1574728 0,0009842 0,0011023 0,001 0,000 0,0001 0,0001	t intensity Biot (Bi) ngth Foot (ft) Furlong (fur) Inch (in) Lightyear (ly) Mile (mi) Nautical mile (M) Parsec (pc) Yard (yd) Aass Carat (ct) Grain (gr) Ounce (avdp) (oz) Ounce (avdp) (oz) Ounce (avdp) (oz) Ounce (avdp) (oz) Ounce (st) Ton (long) Ton (short) (tn) Tonne (metric ton) (t) ffic mass Gram/Cubic entimeter (g/mm ³) Kilogram/Cubic centimeter (g/m ³)
Ampere (A) Meter (m) Kilogram (kg)	Curren 0,1 3,28083 0,00497097 39,36996 1,05702x10 ⁻¹⁶ 0,000621371 0,000539957 3,24078x10 ⁻¹⁷ 1,09361 5.000 15.432,4 35,27392 32,1505 2,20462 0,1574728 0,0009842 0,0011023 0,001 0,001 0,001 0,001 0,001 0,001 0,001	t intensity Biot (Bi) Biot (Bi) Foot (ft) Furlong (fur) Inch (in) Lightyear (ly) Mile (mi) Nautical mile (M) Parsec (pc) Yard (yd) Aass Carat (ct) Grain (gr) Ounce (avdp) (oz) Ounce (ruy) (oz) Ounce (truy) (oz) Ounce (truy) (oz) Pound (lb) Stone (st) Ton (long) Ton (short) (tn) Tonne (metric ton) (t) ffc mass Gram/Cubic centimeter (kg/cm ³) Kilogram/Liter (kg/l) Pound/Cubic foot (lb/ft ³)
Ampere (A) Meter (m) Kilogram (kg)	Curren 0,1 3,28083 0,00497097 33,36996 1,05702x10 ⁻¹⁶ 0,000621371 0,000539957 3,24078x10 ⁻¹⁷ 1,09361 5,000 15,432,4 35,27392 32,1505 2,20462 0,1574728 0,00019842 0,0011023 0,001 0,00001 0,00001 0,0001 0,001 0,005243 Mome	t intensity Biot (Bi) ength Foot (ft) Furlong (fur) Inch (in) Lightyear (ly) Mile (mi) Nautical mile (M) Parsec (pc) Yard (yd) Aass Carat (ct) Grain (gr) Ounce (avdp) (oz) Ounce (avdp) (oz) Ounce (roy) (ozt) Ounce (troy) (ozt) Ounce (troy) (ozt) Ounce (sto) Stone (st) Ton (long) Ton (short) (th) Tonne (metric ton) (t) ffic mass Gram/Cubic milimeter (kg/cm ³) Kilogram/Libr (kg/l) Pound/Cubic foot (lb/ft ³)
Ampere (A) Meter (m) Kilogram (kg)	Curren 0,1 L 3,28083 0,00497097 39,36996 1,05702x10 ⁻¹⁶ 0,000621371 0,000539957 3,24078x10 ⁻¹⁷ 1,09361 L 0,000539957 3,24078x10 ⁻¹⁷ 1,09361 L 0,0005139,57 2,20462 0,1574728 0,0009842 0,0011023 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,001 0,000 0,00 0,00 0	t intensity Biot (Bi) Ength Foot (ft) Furdong (fur) Inch (in) Lightyear (ly) Malte (mi) Nautical mile (M) Parsec (pc) Yard (yd) Mass Carat (ct) Grain (gr) Ounce (avdp) (oz) Ounce (avdp) (oz) Ounce (troy) (ozt) Ounce (troy) (ozt) Pound (lb) Stone (st) Ton (short) (tn) Ton (short) (tn) Ton (short) (tn) Ton (short) (tn) Graam/Cubic milimeter (g/mm ³) Kilogram/Lubic (centimeter (kg/m Pound/Cubic foot (lb/ft ³) nt of force Dyne centimeter (dyn.cm)
Ampere (A) Meter (m) Kilogram (kg)	Curren 0,1 L 3,28083 0,00497097 39,36996 1,05702x10 ⁻¹⁶ 0,000621371 0,000539957 3,24078x10 ⁻¹⁷ 1,09361 N 5,000 15.432,4 7 5,27392 32,1505 2,20462 0,1574728 0,0009842 0,0011023 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,00243 Mome 1x10 ⁻⁰⁷ 10.197,2	t intensity Biot (Bi) Foot (ft) Furdong (fur) Inch (in) Lightyear (ly) Matical mile (mi) Nautical mile (M) Parsec (pc) Yard (yd) Aass Carat (ct) Grain (gr) Ounce (roy) (oz) Ounce (roy) (oz) Ounce (roy) (oz) Ounce (roy) (oz) Ounce (roy) (oz) Ounce (roy) (oz) Ton (bng) Ton (short) (th) Ton (short) (th) Ton (short) (th) Ton (short) (th) Ton (short) (th) Gram/Cubic milimeter (g/mm ³) Kilogram/Lubic (kg/l) Pound/Cubic foot (lb/ft ³) tof force Dyne centimeter (dyn.cm)
Ampere (A) Meter (m) Kilogram (kg)	Curren 0,1 1,3,28083 0,00497097 3,9,36996 1,05702x10 ⁻¹⁶ 0,000621371 0,000539957 3,24078x10 ⁻¹⁷ 1,09361 1,5,432,4 1,5,27392 3,2,1505 2,20462 0,1574728 0,0009842 0,0011023 0,001 0,0001 0,000 0,001 0,001 0,001 0,000 0,00 0	t intensity Biot (Bi) angth Foot (ft) Furlong (fur) Inch (in) Lightyear (ly) Mile (mi) Nautical mile (M) Parsec (pc) Yard (yd) Aass Carat (ct) Grain (gr) Ounce (avdp) (oz) Ounce (avdp) (oz) Ounce (troy) (ozt) Ounce (troy) (ozt) Pound (lb) Stone (st) Ton (long) Ton (short) (tn) Tonne (metric ton) (t) ffic mass Gram/Cubic milimeter (kg/cm³) Kilogram/Liter (kg/l) Pound/Cubic foot (lb/t³) nt of force Dyne centimeter (dyn.cm) Gram-force centimeter (kg.cm)
Ampere (A) Meter (m) Kilogram (kg)	Curren 0,1 3,28083 0,00497097 9,3,68996 1,05702x10 ⁻¹⁶ 0,000621371 0,000539957 3,24078x10 ⁻¹⁷ 1,09361 5,000 15,432,4 35,27392 32,1505 2,20462 0,1574728 0,0009842 0,0011023 0,001 0,0001 0,0001 0,0001 0,0001 0,0001 0,001	t intensity Biot (Bi) Biot (Bi) Foot (ft) Furlong (fur) Inch (in) Lightyear (ly) Mile (mi) Nautical mile (M) Parsec (pc) Yard (yd) Parsec (pc) Yard (yd) Aass Carat (ct) Grain (gr) Ounce (avdp) (oz) Ounce (avdp) (oz) Ounce (avdp) (oz) Ounce (avdp) (oz) Ounce (troy) (ozt) Pound (lb) Stone (st) Ton (long) Ton (short) (tn) Ton (short) (tn) Ton (short) (tn) Gram/Cubic milimeter (g/mm ³) Kilogram/Liter (kg/l) Pound/Cubic foot (lb/lt ³) nt of force Dyne centimeter (dyn.cm) Gram-force centimeter (kgr.m)
Ampere (A) Meter (m) Kilogram (kg)	Curren 0,1 3,28083 0,00497097 39,36996 1,05702x10 ⁻¹⁶ 0,000621371 0,000539957 3,24078x10 ⁻¹⁷ 1,09361 5,000 15,432,4 35,27392 32,1505 2,20462 0,1574728 0,0009842 0,0011023 0,001	t intensity Biot (Bi) Biot (Bi) Fort (ft) Furlong (fur) Inch (in) Lightyear (ly) Mile (mi) Nautical mile (M) Parsec (pc) Yard (yd) Aass Carat (ct) Grain (gr) Ounce (avdp) (oz) Ounce (avdp) (oz) Ounce (avdp) (oz) Ounce (avdp) (oz) Ounce (troy) (ozt) Pound (lb) Stone (st) Ton (long) Ton (short) (tn) Tonn (short) (tn) Tonn (short) (tn) Gram/Cubic centimeter (kg/cm³) Kilogram/Libic centimeter (kg/cm³) Kilogram/Libic cont (lb/tt³) nt of force Dyne centimeter (dyr.cm) Gram-force entimeter (dgr.m) Kilogram-force meter (kgf.m) Ounce-force foot (ozf.ft) Ounce-force foot (ozf.ft)
Ampere (A) Meter (m) Kilogram (kg)	Curren 0,1 3,28083 0,00497097 39,36996 1,05702x10 ⁻¹⁶ 0,000621371 0,000539957 3,24078x10 ⁻¹⁷ 1,09361 5,000 15,432,4 35,27392 32,1505 2,20462 0,1574728 0,0009842 0,0011023 0,001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,001 0	t intensity Biot (Bi) Ength Foot (ft) Furdong (fur) Inch (in) Lightyear (ly) Mate (mi) Nautical mile (M) Parsec (pc) Yard (yd) Mass Carat (ct) Grain (gr) Ounce (avdp) (oz) Ounce (avdp) (oz) Ounce (troy) (ozt) Pound (lb) Stone (st) Ton (short) (m) Ton (short) (tn) Ton (short) (t
Ampere (A) Meter (m) Kilogram (kg)	Curren 0,1 L 3,28083 0,00497097 39,36996 1,05702x10 ⁻¹⁶ 0,000621371 0,000539957 3,24078x10 ⁻¹⁷ 1,09361 N 5,000 15,432,4 35,27392 32,1505 2,20462 0,1574728 0,0009842 0,0011023 0,001 0,001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,001 0,0001 0,0001 0,001 0,001 0,001 0,00243 Mome 1x10 ⁻⁶⁷ 10.197,2 0,1019716 11,80097 141,6116 0,737561 8,85075	t intensity Biot (Bi) Foot (ft) Furlong (fur) Inch (in) Lightyear (ly) Matic (mi) Nautical mile (M) Parsec (pc) Yard (yd) Aass Carat (ct) Grain (gr) Ounce (avdp) (oz) Ounce (troy) (ozt) Ounce (troy) (ozt) Pound (lb) Stone (st) Ton (short) (tn) Ton (short) (tn) Ton (short) (tn) Ton (short) (tn) Ton (short) (tn) Gram/Cubic milimeter (kg/cm³) Kilogram/Liter (kg/l) Pound/Cubic foot (lb/ft³) tt of force Dyne centimeter (kg/.m) Gram-force centimeter (kgf.m) Gram-force centimeter (kgf.m) Ounce-force inches (ozf.ft) Ounce-force inches (ozf.in) Pound-force inches (lbf.ft)
Ampere (A) Meter (m) Kilogram (kg)	Curren 0,1 1,3,28083 0,00497097 3,9,36996 1,05702x10 ⁻¹⁶ 0,000621371 0,000539957 3,24078x10 ⁻¹⁷ 3,24078x10 ⁻¹⁷ 1,5,322,4 1,52,7392 3,2,1505 2,20462 0,1574728 0,0009842 0,0011023 0,001 0,001 0,0001 0,001 0,0001 0,000 0,001 0,001 0,000 0,001 0,001 0,000 0,001 0,001 0,000 0,001 0,001 0,000 0,001 0,001 0,000 0,001 0,000 0,001 0,001 0,000 0,001 0,001 0,000 0,000 0,001 0,000 0,00	t intensity Biot (Bi) Foot (H) Furlong (fur) Inch (in) Lightyear (ly) Mile (mi) Nautical mile (M) Parsec (pc) Yard (yd) Aass Carat (ct) Grain (gr) Ounce (avdp) (oz) Ounce (avdp) (oz) Ounce (avdp) (oz) Ounce (roy) (ozt) Pound (lb) Stone (st) Ton (long) Ton (short) (tn) Tonne (metric ton) (t) ffic mass Gram/Cubic milimeter (g/mm ³) Kilogram/Liter (kg/l) Pound/Cubic foot (lb/ft ³) Rilogram/Liter (kg/l) Pound/Cubic foot (lb/ft ³) nt of force Dyne centimeter (dyn.cm) Gram-force enter (kgf.m) Ounce-force inches (ozf.ft) Ounce-force inches (lof.ft) Pound-force foot (lbf.ft) Pound-force foot (lbf.ft) Pound-force foot (lbf.ft)
Ampere (A) Meter (m) Kilogram (kg)	Curren 0,1 1 3,28083 0,00497097 39,36996 1,05702x10 ⁻¹⁶ 0,000621371 0,000539957 3,24078x10 ⁻¹⁷ 1,09361 1 5,000 15,432,4 35,27392 32,1505 2,20462 0,1574728 0,0009842 0,0011023 0,001 0,0	t intensity Biot (Bi) Biot (Bi) Foot (ft) Furlong (fur) Inch (in) Lightyear (ly) Mile (mi) Nautical mile (M) Parsec (pc) Yard (yd) Aass Carat (ct) Grain (gr) Ounce (avdp) (oz) Ounce (raydp) (oz) Ounce (raydp) (oz) Ounce (raydp) (oz) Ounce (raydp) (oz) Ounce (raydp) (oz) Ounce (raydp) (oz) Ton (long) Ton (short) (tn) Tonne (metric ton) (t) ffic mass Gram/Cubic milimeter (kg/cm ³) Kilogram/Liter (kg/l) Pound/Cubic foot (lb/ft ^s) nt of force Dyne centimeter (dyn.cm) Gram-force enter (kgf.m) Ounce-force foot (lbf.ft) Pound-force foot (lbf.ft) Pound-force foot (lbf.ft) Pound-force foot (lbf.ft) Pound-force foot (lbf.ft) Pound-force foot (lbf.ft) Pound-force foot (lbf.ft) Cunce-force foot (lbf.ft) Pound-force foot (lbf.ft)
Ampere (A) Meter (m) Kilogram (kg)	Curren 0,1 3,28083 0,00497097 9,3,36996 1,05702x10 ⁻¹⁶ 0,000621371 0,000539957 3,24078x10 ⁻¹⁷ 1,09361 5,000 15,432,4 35,27392 32,1505 2,20462 0,1574728 0,0009842 0,0011023 0,001 0,001 0,001 0,001 0,001 0,0001 0,000 0,001 0,000 0,	t intensity Biot (Bi) Biot (Bi) Fort (ft) Furlong (fur) Inch (in) Lightyear (ly) Mile (mi) Nautical mile (M) Parsec (pc) Yard (yd) Aass Carat (ct) Grain (gr) Ounce (avdp) (oz) Ounce (avdp) (oz) Ounce (avdp) (oz) Ounce (troy) (ozt) Pound (lb) Stone (st) Ton (long) Ton (short) (tn) Ton (short) (tn) Ton (short) (tn) Gram/Cubic milimeter (g/mm ³) Kilogram/Liter (kg/l) Pound/Cubic foot (lb/ft ³) rt of force Dyne centimeter (dyn.cm) Gram-force centimeter (kgf.m) Ounce-force inches (ozf.nt) Ounce-force inches (lof.nt) Pound-force foot (lbf.nt) Pound-force inches (lof.nt) Pound-force inches (lof.nt) Pound-force inches (lof.nt) Pound-force inches (lbf.nt) Pound-force inches (lbf.nt) Pound-force inches (lbf.nt) Pound-force inches (lbf.nt)
Ampere (A) Meter (m) Kilogram (kg) Kilogram per cubic meter (kg/m³) Newton-meter (Nm)	Curren 0,1 1 3,28083 0,00497097 39,36996 1,05702x10 ⁻¹⁶ 0,000621371 0,000539957 3,24078x10 ⁻¹⁷ 1,09361 1 5,000 15,432,4 35,27392 32,1505 2,20462 0,1574728 0,0009842 0,0011023 0,001 0,0	t intensity Biot (Bi) Biot (Bi) Foot (ft) Furlong (fur) Inch (in) Lightyear (ly) Mile (mi) Nautical mile (M) Parsec (pc) Yard (yd) Aass Carat (ct) Grain (gr) Ounce (avdp) (oz) Ounce (raydp) (oz) Ounce (raydp) (oz) Ounce (raydp) (oz) Ounce (raydp) (oz) Ounce (raydp) (oz) Ounce (raydp) (oz) Ton (long) Ton (short) (tn) Tonne (metric ton) (t) ffic mass Gram/Cubic milimeter (kg/cm ³) Kilogram/Liter (kg/l) Pound/Cubic foot (lb/ft ^s) nt of force Dyne centimeter (dyn.cm) Gram-force enter (kgf.m) Ounce-force foot (lbf.ft) Pound-force foot (lbf.ft) Pound-force foot (lbf.ft) Pound-force foot (lbf.ft) Pound-force foot (lbf.ft) Pound-force foot (lbf.ft) Pound-force foot (lbf.ft) Cunce-force foot (lbf.ft) Pound-force foot (lbf.ft)

From	Multiply by	To obtain
		ower
	3,415179	BTU/hour (BTU/h)
	0,05691965	BTU/minute (BTU/min)
	0,000948661	BTU/second (BTU/s)
	0,000948881	Calorie/second (cal/s)
W-++ 010		
Watt (W)	0,001341022	Horsepower (HP)
	44,25373	Pound-feet/minute (lb.ft/min)
	0,7375621	Pound-feet/second (lb.ft/s)
	0,00135962	Vaporhorse (cv)
	0,001	Kilowatt (kW)
		essure
	1	Pascal (Pa)
	0,00001	Bar
	10	Dyne/Square centimeter (Dye/cm ²)
No	0,101971621	Kilogram-force/Square meter (kgf/m ²)
Newton per square meter (N/m²)	1,04427x10-05	Ton-force (short)/Foot ² (ton.f/ft ²)
	9,32385x10 ⁻⁰⁶	Ton-force (long)/Foot ² (ton.f/ft ²)
	1,45x10 ⁻⁰⁷	Force-kip/Square inches (kip/in ²) (ksi)
	0,000145038	Pound-force/Square inches (lbf/in ² , psi)
	Relu	ictance
	1	Ampere/volt-second (A/V.s)
Ampere per Weber (A/Wb)	1x10 ⁻⁰⁸	Ampere/maxell (A/Mx)
	1x10 ⁻⁰¹	Biot/Weber (Bi/Wb)
		resistance
0hm (Ω)	1	Volt per Ampere (V/A)
()	1	(1/S)
	Res	istivity
Ohm-meter (Ωm)	1	Siemens per meter (S/m)
		mic temperature
	(K)-273,15	Degree Celsius (°C)
Kelvin (K)	(K-273,15)x9/5+32	Degree Fahrenheit (°F)
	1,8	Rankine (Ra)
Degree Fahrenheit (°F)	(F-32)x 5/9	Degree Celsius (°C)
	(9/5x°C)+32	Degree Fahrenheit (°F)
Degree Celsius (°C)		
	(°C) + 273,15	Kelvin (K)
Trigonometric degree	0,01745	Radian (rad)
	Surfac	e tension
Newton per meter (N/m)	1	Joule per square meter (J/m ²)
	0,001	Newton per meter (N/m)
dyn/cm	1	Erg/Square centimeter (Erg/cm ²)
		īme
		Century
	3,17x10 ⁻¹⁰	Gentury
	3,17x10 ⁻¹⁰ 1,16x10 ⁻⁰⁵	Day
Second (s)		Day
Second (s)	1,16x10 ⁻⁰⁵ 8,27x10 ⁻⁰⁷	Day Fortnight
Second (s)	1,16x10 ⁻⁰⁵ 8,27x10 ⁻⁰⁷ 0,000277778	Day Fortnight Hour (h)
Second (s)	1,16x10 ⁻⁰⁵ 8,27x10 ⁻⁰⁷ 0,000277778 0,01666667	Day Fortnight Hour (h) Minute (')
Second (s)	1,16x10 ⁻⁰⁵ 8,27x10 ⁻⁰⁷ 0,000277778 0,01666667	Day Fortnight Hour (h)
Second (s) Radian per second (rad/s)	1,16x10 ⁻⁰⁵ 8,27x10 ⁻⁰⁷ 0,000277778 0,01666667	Day Fortnight Hour (h) Minute (')
	1,16x10 ⁻⁰⁵ 8,27x10 ⁻⁰⁷ 0,000277778 0,01666667 Angul 0,1592	Day Fortnight Hour (h) Minute (') ar speed rpm
	1,16x10- ⁶⁵ 8,27x10- ⁶⁷ 0,000277778 0,01666667 Angul 0,1592 S	Day Fortnight Hour (h) Minute (') ar speed rpm peed
	1,16x10 ⁻⁶⁵ 8,27x10 ⁻⁶⁷ 0,000277778 0,01666667 Angul 0,1592 S 11.811,02	Day Fortnight Hour (h) Minute (') ar speed rpm peed Foot/hour (ft/h)
	1,16x10 ⁻⁶⁵ 8,27x10 ⁻⁶⁷ 0,000277778 0,01666667 Angul 0,1592 \$ 11.811,02 196,8504	Day Fortnight Hour (h) Minute (') ar speed rpm peed Foot/hour (ft/h) Foot/hour (ft/min)
	1,16x10 ⁻⁶⁵ 8,27x10 ⁻⁶⁷ 0,000277778 0,01666667 Angul 0,1592 S 11.811,02	Day Fortnight Hour (h) Minute (') ar speed rpm peed Foot/hour (ft/h)
Radian per second (rad/s)	1,16x10 ⁻⁶⁵ 8,27x10 ⁻⁶⁷ 0,000277778 0,01666667 Angul 0,1592 \$ 11.811,02 196,8504	Day Fortnight Hour (h) Minute (') ar speed rpm peed Foot/hour (ft/h) Foot/hour (ft/min)
	1,16x10 ⁻⁰⁵ 8,27x10 ⁻⁰⁷ 0,000277778 0,01666667 Angul 0,1592 S 11.811,02 196,8504 3,28084	Day Fortnight Hour (h) Minute (') ar speed rpm peed Foot/hour (ft/h) Foot/minute (ft/min) Foot/second (ft/s) Knot (kn)
Radian per second (rad/s)	1,16x10-45 8,27x10-47 0,000277778 0,01666667 8,000 11.811,02 196,8504 3,28084 1,943844 0,003016955	Day Fortnight Hour (h) Minute (') ar speed rpm peed Foot/hour (ft/h) Foot/minute (ft/min) Foot/second (ft/s) Knot (kn) Mach (Ma)
Radian per second (rad/s)	1,16x10-45 8,27x10-47 0,000277778 0,0166667 Angu 0,1592 S 11.811,02 196,8504 3,28084 1,943844 0,003016955 3,600	Day Fortnight Hour (h) Minute (') ar speed rpm peed Foot/hour (ft/h) Foot/minute (ft/min) Foot/second (ft/s) Knot (kn) Mach (Ma) Meter/hour (m/h)
Radian per second (rad/s)	1,16x10-45 8,27x10-47 0,000277778 0,0166667 Angul 0,1592 S 11.811,02 196,8504 3,28084 1,943844 0,003016955 3,600 60	Day Fortnight Hour (h) Minute (') ar speed rpm peed Foot/hour (t/h) Foot/second (t/s) Knot (kn) Mach (Ma) Meter/hour (m/h) Meter/minute (m/min)
Radian per second (rad/s)	1,16x10-45 8,27x10-47 0,000277778 0,0166667 Angu 0,1592 S 11.811,02 196,8504 3,28084 1,943844 0,003016955 3,600	Day Fortnight Hour (h) Minute (') ar speed rpm peed Foot/hour (ft/h) Foot/minute (ft/min) Foot/second (ft/s) Knot (kn) Mach (Ma) Meter/hour (m/h)
Radian per second (rad/s)	1,16x10-45 8,27x10-47 0,000277778 0,0166667 Angul 0,1592 S 11.811,02 196,8504 3,28084 1,943844 0,00316955 3,800 60 2,236936	Day Fortnight Hour (h) Minute (') ar speed rpm peed Foot/hour (t/h) Foot/second (t/s) Knot (kn) Mach (Ma) Meter/hour (m/h) Meter/minute (m/min)
Radian per second (rad/s)	1,16x10-45 8,27x10-47 0,000277778 0,0166667 Angul 0,1592 S 11.811,02 196,8504 3,28084 1,943844 0,00316955 3,800 60 2,236936	Day Fortnight Hour (h) Minute (') ar speed rpm peed Foot/hour (ft/h) Foot/second (ft/s) Knot (kn) Mach (Ma) Meter/hour (m/h) Meter/ninute (m/min) Mile/hour (Mi/h) c viscosity
Radian per second (rad/s)	1,16x10-45 8,27x10-47 0,000277778 0,0166667 8,27x10-47 0,1592 5 11.811,02 196,8504 3,280084 1,943844 0,003016955 3.600 60 2,236936 Dynam 1	Day Fortnight Hour (h) Minute (') ar speed rpm peed Foot/hour (ft/h) Foot/second (ft/s) Knot (kn) Mach (Ma) Meter/nour (m/h) Meter/nour (m/h) Meter/nour (m/h) C viscosity Newton-second per square meter (Ns/m²)
Radian per second (rad/s) Meter per second (m/s)	1,16x10-45 8,27x10-47 0,000277778 0,0166667 Angul 0,1592 S 111.811,02 196,8504 3,28084 1,943844 0,003016955 <u>3,600</u> 60 2,236936 Dynam 1 1 1	Day Fortnight Hour (h) Minute (') ar speed rpm peed Foot/hour (ft/h) Foot/nour (ft/h) Foot/second (ft/s) Knot (kn) Mach (Ma) Meter/minute (m/min) Mile/hour (Mi/h) c viscosity Newton-second per square meter (Ns/m²) Kilogram per meter-second (kg/(m.s))
Radian per second (rad/s)	1,16x10-45 8,27x10-47 0,000277778 0,0166667 8,000 1,1592 5 11.811,02 196,8504 3,28084 3,28084 1,943844 0,003016955 3,660 60 2,236936 0 2,236936 0 0,000 1 1 1 1 1 0,67197	Day Fortnight Hour (h) Minute (') ar speed rpm peed Foot/hour (ft/h) Foot/minute (ft/min) Foot/second (ft/s) Knot (kn) Mach (Ma) Meter/minute (m/min) Mile/hour (Mi/h) c viscosity Newton-second per square meter (Ns/m²) Kilogram per meter-second (kg/(m.s)) Pound per foot-second (kg/(m.s))
Radian per second (rad/s) Meter per second (m/s)	1,16x10-45 8,27x10-47 0,000277778 0,0166667 8,001592 0,1592 5,11.811,02 196,8504 3,28084 1,943844 0,003016955 3,600 60 2,236936 Dynam 1 1 0,67197 0,67197	Day Fortnight Hour (h) Minute (') ar speed rpm peed Foot/hour (t/h) Foot/second (t/s) Knot (kn) Mach (Ma) Meter/minute (m/min) Mile/hour (m/h) Meter/minute (m/min) Mile/hour (Mi/h) c viscosity Newton-second per square meter (Ns/m²) Kilogram per meter-second (kg/(m.s)) Pound per foot-second (kg/(m.s))
Radian per second (rad/s) Meter per second (m/s)	1,16x10-45 8,27x10-47 0,000277778 0,0166667 8,000 1,1592 5 11.811,02 196,8504 3,28084 3,28084 1,943844 0,003016955 3,660 60 2,236936 0 2,236936 0 0,000 1 1 1 1 1 0,67197	Day Fortnight Hour (h) Minute (') ar speed rpm peed Foot/hour (ft/h) Foot/minute (ft/min) Foot/second (ft/s) Knot (kn) Mach (Ma) Meter/minute (m/min) Mile/hour (Mi/h) c viscosity Newton-second per square meter (Ns/m²) Kilogram per meter-second (kg/(m.s)) Pound per foot-second (kg/(m.s))
Radian per second (rad/s) Meter per second (m/s)	1,16x10-45 8,27x10-47 0,000277778 0,0166667 8,01592 0,1592 5,11.811,02 196,8504 3,28084 1,943844 0,003016955 3,600 60 2,236936 Dynam 1 1 0,67197 0,67197	Day Fortnight Hour (h) Minute (') ar speed rpm peed Foot/hour (ft/h) Foot/second (ft/s) Knot (kn) Mach (Ma) Meter/minute (m/min) Mile/hour (Mi/h) c viscosity Newton-second per square meter (Ns/m²) Kilogram per meter-second (kg/(m.s)) Pound per foot-second (kg/(m.s)) Slug per foot second (slug/(ft.s)) Sour foot second (slug/(ft.s))
Radian per second (rad/s) Meter per second (m/s) Pascal-second (Pa.s)	1,16x10-45 8,27x10-47 0,000277778 0,0166667 Angul 0,1592 S 11.811,02 196,8504 3,28084 1,943844 0,003016955 3,600 60 2,236936 Dynam 1 1 1 0,67197 0,67197 0,67197	Day Fortnight Hour (h) Minute (') ar speed rpm peed Foot/hour (ft/h) Foot/minute (ft/min) Foot/second (ft/s) Knot (kn) Mach (Ma) Meter/minute (m/min) Mile/hour (Mi/h) c viscosity Newton-second per square meter (Ns/m²) Kilogram per meter-second (kg/(m.s)) Pound per foot-second (kg/(m.s)) Pound-force second (slug/(ft.s)) Pound-force second (plug/(ft.s)) Pound-force second (plug/(ft.s))
Radian per second (rad/s) Meter per second (m/s)	1,16x10-45 8,27x10-47 0,000277778 0,0166667 S 11.811,02 196,8504 3,28084 1,943844 0,003016955 3.600 60 2,236936 Dynam 1 1 1 0,67197 0,67197 0,67197 0,62089 1 1	Day Fortnight Hour (h) Minute (') ar speed rpm peed Foot/hour (ft/h) Foot/hour (ft/h) Foot/second (ft/s) Knot (kn) Mach (Ma) Meter/nour (m/h) Meter/nour (m/h) Meter/nour (m/h) Meter/nour (m/h) Meter/nour (m/h) Meter/nour (m/h) Slie/hour (Mi/h) c viscosity Newton-second per square meter (Ns/m²) Kilogram per meter-second (kg/(m.s)) Pound per foot-second (lbm./ft.s)) Slug per foot second (slug/(ft.s)) Pound-force second per square foot (blf.s/ft²) Dyne second per square cot(lbf.s/ft²) Dyne second per square cot(lbf.s/ft²) Cram per centimeter (dyn.s/cm²)
Radian per second (rad/s) Meter per second (m/s) Pascal-second (Pa.s)	1,16x10-45 8,27x10-47 0,000277778 0,0166667 Angu 0,1592 S 111.811,02 196,8504 3,28084 1,943844 0,003016955 3,600 60 2,236936 Dynam 1 1 1 0,67197 0,627197 0,02089 1 1 1 0,67197	Day Fortnight Hour (h) Minute (') ar speed rpm peed Foot/hour (ft/h) Foot/minute (ft/min) Foot/second (ft/s) Knot (kn) Mach (Ma) Meter/minute (m/min) Mile/hour (Mi/h) c viscosity Newton-second per square meter (Ns/m²) Kilogram per meter-second (kg/(ft.s)) Pound per foot-second (kg/(ft.s)) Slug per foot second (kg/(ft.s)) Dyne second per square foot (lbf.s/ft²) Dyne second per square foot (lbf.s/ft²) Gram per centimeter second (g/(cm.s)) Pascal-second (Pa.s)
Radian per second (rad/s) Meter per second (m/s) Pascal-second (Pa.s)	1,16x10-45 8,27x10-47 0,000277778 0,0166667 8,27x10-47 1,943844 0,003016955 3,600 60 2,236936 Dynam 1 1 0,67197 0,67197 0,02089 1 1 0,0,1 0,1	Day Fortnight Hour (h) Minute (') ar speed rpm peed Foot/hour (ft/h) Foot/second (ft/s) Knot (kn) Mach (Ma) Meter/hour (m/h) Meter/hour (m/h) Meter/hour (m/h) Meter/hour (m/h) Kilogram per meter-second (kg/(m.s)) Newton-second per square meter (Ns/m?) Kilogram per meter-second (kg/(m.s)) Pound per foot-second (kg/(m.s)) Pound-force second per square foot (bf.s)/ft²) Dyne second per square centimeter (dyn.s/cm²) Gram per centimeter second (g/(cm.s)) Pacal-second (g/(cm.s)) Pacal-second (g/(cm.s))
Radian per second (rad/s) Meter per second (m/s) Pascal-second (Pa.s)	1,16x10-45 8,27x10-47 0,000277778 0,0166667 8,27x10-47 1,943844 0,003016955 3,600 60 2,236936 Dynam 1 1 0,67197 0,67197 0,02089 1 1 0,0,1 0,1	Day Fortnight Hour (h) Minute (') ar speed rpm peed Foot/hour (ft/h) Foot/minute (ft/min) Foot/second (ft/s) Knot (kn) Mach (Ma) Meter/minute (m/min) Mile/hour (Mi/h) c viscosity Newton-second per square meter (Ns/m²) Kilogram per meter-second (kg/(ft.s)) Pound per foot-second (kg/(ft.s)) Slug per foot second (kg/(ft.s)) Dyne second per square foot (lbf.s/ft²) Dyne second per square foot (lbf.s/ft²) Gram per centimeter second (g/(cm.s)) Pascal-second (Pa.s)
Radian per second (rad/s) Meter per second (m/s) Pascal-second (Pa.s) Poise	1,16x10-45 8,27x10-47 0,000277778 0,0166667 8,27x10-47 1,1811,02 196,8504 3,28084 1,943844 0,003016955 3,600 60 2,236936 Dynam 1 1 0,67197 0,67197 0,67197 0,67197 1 0,67197 1 0,0,1 1 0,1 0,1 0,1 0,1	Day Fortnight Hour (h) Minute (') ar speed rpm peed Foot/hour (tt/h) Foot/second (tt/s) Knot (kn) Mach (Ma) Meter/hour (m/h) Meter/hour (m/h) Meter/hour (m/h) Meter/minute (m/min) Mile/hour (Mi/h) c viscosity Newton-second per square meter (Ns/m²) Kilogram per meter-second (kg/(m.s)) Pound per foot-second (kg/(m.s)) Pound-force second per square foot (bfs.s/ft²) Dyne second per square centimeter (dyn.s/m²) Gram per centimeter second (g/(cm.s)) Pascal-second (per.s) Pascal-second (per.s) Newton-second per square meter (Ns/m²) Gram per centimeter second (g/(cm.s)) Pascal-second (per.s) Newton-second per square meter (Ns/m²) ic viscosity
Radian per second (rad/s) Meter per second (m/s) Pascal-second (Pa.s)	1,16x10-45 8,27x10-47 0,000277778 0,0166667 Angul 0,1592 S 11.811,02 196,8504 3,28084 1,943844 0,003016955 3,600 60 2,236936 Dynam 1 1 0,67197 0,67197 0,67197 0,67197 0,02089 1 1 1 0,1 0,1 0,1 0,1 0,1 0,1 0,0001	Day Fortnight Hour (h) Minute (') ar speed rpm peed Foot/hour (ft/h) Foot/second (ft/s) Knot (kn) Mach (Ma) Meter/minute (m/min) Mach (Ma) Meter/minute (m/min) Kile/hour (Mi/h) c viscosity Newton-second per square meter (Ns/m²) Kilogram per meter-second (kg/(m.s)) Pound per foot-second (slug/(ft.s)) Slug per foot second (slug/(ft.s)) Pound-force second per square foot (lbf.s/ft²) Dyne second per square centimeter g(dyn.s/cm²) Gram per centimeter second (g/(cm.s)) Pascal-second (Pa.s) Newton-second per square meter (Ns/m²) Gram per contimeter second (pa.s) Newton-second per square meter (Ns/m²) Gram per contimeter second (Pa.s) Newton-second per square meter (Ns/m²) it viscosity Square meter per second (m²/s)
Radian per second (rad/s) Meter per second (m/s) Pascal-second (Pa.s) Poise	1,16x10-45 8,27x10-47 0,000277778 0,0166667 S 11.811,02 196,8504 3,28084 1,943844 0,003016955 3,600 60 2,236936 D ynam 1 1 0,67197 0,67197 0,67197 0,67197 0,67197 0,67197 0,02089 1 1 1 0,1 0,1 0,1 0,1 1 0,1 0,1 1 0,1 0,	Day Fortnight Hour (h) Minute (') ar speed rpm peed Foot/hour (ft/h) Foot/second (ft/s) Knot (kn) Mach (Ma) Meter/ninute (m/min) Mile/hour (Mi/h) c viscosity Newton-second per square meter (Ns/m²) Kilogram per meter-second (kg/(m.s)) Pound-force second (lbm./ft.s)) Slug per foot-second (lbm./ft.s)) Slug per foot second (lbm./ft.s) Opme foot per square meter (Ns./m²) Mile per cont-second (lbm./ft.s) Slug per foot second (lbm./ft.s) Slug per foot second (lbm./ft.s) Slug per square contimeter (dyn.s/m²) Workon-second per square meter (Ns./m²) ic viscosity Square meter per second (m²/s) Square centimeter per second (m²/s)
Radian per second (rad/s) Meter per second (m/s) Pascal-second (Pa.s) Poise	1,16x10-45 8,27x10-47 0,000277778 0,0166667 S 11,811,02 196,8504 3,28084 1,943844 0,003016955 3,600 60 2,236936 Dynam 1 1 1 0,67197 0,67197 0,67197 0,67197 0,67197 1 1 1 1 0,1 0,1 0,1 0,1 0,1 0,1 V(mmature) V(mmature) 1 V(mmature) V(mmature) 1 V(mmature) V(mmature) 1 V(mmature) V(mmature) 1 V(mmature) V	Day Fortnight Hour (h) Minute (') ar speed rpm peed Foot/hour (tt/h) Foot/hour (tt/h) Foot/second (ft/s) Knot (kn) Mach (Ma) Meter/ninute (m/min) Mile/hour (Mi/h) c viscosity Newton-second per square meter (Ns/m²) Kilogram per meter-second (kg/(m.s)) Pound-force second (lbm./ft.s)) Slug per foot second (lbm./ft.s)) Dyne second per square tot (lbf.s/ft²) Dyne second per square foot (lbf.s/ft²) Dyne second per square cottimeter (dyn.s/cm²) Gram per centimeter second (g/(cm.s)) Pascal-second (Pa.s) Newton-second per square meter (Ns/m²) ic viscosity Square meter per second (m²/s)
Radian per second (rad/s) Meter per second (m/s) Pascal-second (Pa.s) Poise	1,16x10-45 8,27x10-47 0,000277778 0,0166667 S 11.811,02 196,8504 3,28084 1,943844 0,003016955 3,600 60 2,236936 D ynam 1 1 0,67197 0,67197 0,67197 0,67197 0,67197 0,67197 0,67197 0,02089 1 1 1 0,1 0,1 0,1 0,1 1 0,1 0,1 1 0,1 0,	Day Fortnight Hour (h) Minute (') ar speed rpm peed Foot/hour (ft/h) Foot/second (ft/s) Knot (kn) Mach (Ma) Meter/nour (m/h) Meter/nour (m/h) Mile/hour (Mi/h) c viscosity Newton-second per square meter (Ns/m²) Kilogram per meter-second (kg/(m.s)) Pound-force second (lbf.s/ft²) Dyne second per square foot (lbf.s/ft²) Dyne second per square centimeter (dyn.s/m²) Gram per centimeter second (g/(cm.s)) Pascal-second (Pa.s) Newton-second per square meter (Ns/m²) Gram per centimeter second (gr/(s)) Pascal-second (Pa.s) Newton-second per square meter (Ns/m²) ic viscosity Square meter per second (m²/s)
Radian per second (rad/s) Meter per second (m/s) Pascal-second (Pa.s) Poise	1,16x10-45 8,27x10-47 0,000277778 0,0166667 S 11,811,02 196,8504 3,28084 1,943844 0,003016955 3,600 60 2,236936 0 0,003016955 3,600 60 2,236936 0 0,0001 1 1 1 0,67197 0,02089 1 1 1 0,67197 0,02089 1 1 1 0,7197 0,02089 1 1 1 0,7197 0,02089 1 1 0,07197 0,02089 1 1 0,07197 0,02089 1 1 0,07197 0,02089 1 1 0,07197 0,002089 1 1 0,07197 0,0000 1 1 0,0000 1 0,0000 1 0,0000 1 0,00000 0,00000 0,00000 0,000000	Day Fortnight Hour (h) Minute (') ar speed rpm peed Foot/hour (ft/h) Foot/minute (ft/min) Foot/second (ft/s) Knot (kn) Mach (Ma) Meter/nour (m/h) Meter/nour (m/h) Meter/nour (m/h) Meter/nour (m/h) Meter/nour (m/h) Kilogram per meter-second (kg/(m.s)) Newton-second per square meter (Ns/m²) Kilogram per meter-second (kg/(m.s)) Pound per foot-second (kg/(ft.s)) Slug per foot second (kg/(ft.s)) Pound-force second per square note (lbf.s/ft²) Dyne second per square centimeter (dyn.s/cm²) Gram per centimeter second (g/cm.s)) Pascal-second (pa.s) Newton-second per square meter (Ns/m²) ic viscosity Square centimeter per second (m²/s) Square centimeter per second (m²/s) square centimeter per second (m²/s) square centimeter per second (m²/s)
Radian per second (rad/s) Meter per second (m/s) Pascal-second (Pa.s) Poise	1,16x10-45 8,27x10-47 0,000277778 0,0166667 S 11.811,02 196,8504 3,28084 1,943844 0,003016955 3.600 60 2,236936 Dynam 1 1 1 0,67197 0,627197 0,02089 1 1 0,67197 0,02089 1 1 0,67197 0,02089 1 1 0,67197 0,02089 1 1 0,67197 0,02089 1 1 0,67197 0,02089 1 0,001 1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0	Day Fortnight Hour (h) Minute (') ar speed rpm peed Foot/hour (tt/h) Foot/second (tt/s) Knot (kn) Grout/second (tt/s) Knot (kn) Mach (Ma) Meter/hour (m/h) Meter/hour (m/h) Meter/hour (m/h) Meter/hour (m/h) Meter/minute (m/min) Kilogram per meter-second (kg/(m.s)) Pound per foot-second (kg/(m.s)) Pound per foot-second (kg/(m.s)) Pound-force second per square meter (Ns/m?) Kilogram per meter-second (kg/(m.s)) Pound-force second per square foot (bf.s)/ft?) Dyne second per square centimeter (dyn.s/cm?) Gram per centimeter second (g/(cm.s)) Paccal-second (pa.s) Newton-second per square meter (Ns/m?) ic viscosity Square meter per second (m²/s) Square centimeter per second (m²/s) Cubic foot (ft³) Cubic inch (in³)
Radian per second (rad/s) Meter per second (m/s) Pascal-second (Pa.s) Poise Stokes (St)	1,16x10-45 8,27x10-47 0,000277778 0,0166667 8,27x10-47 1,1811,02 196,8504 3,28084 1,943844 0,003016955 3,600 60 2,236936 Dynam 1 1 0,67197 0,62089 1 1 1 0,7197 0,62089 1 1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1	Day Fortnight Hour (h) Minute (') ar speed rpm peed Foot/hour (ft/h) Foot/second (ft/s) Knot (kn) Mach (Ma) Meter/hour (m/h) Meter/hour (m/h) Meter/hour (m/h) Kot (kn) Mach (Ma) Meter/hour (m/h) Stilogram per meter-second (kg/(m.s)) Pound per foot-second (kg/(m.s)) Pound-force second per square meter (Ns/m?) Slug per foot second (gl/(cm.s)) Pound-force second per square foot (bf.s/ft?) Dyne second per square centimeter (dyn.s/m?) Gram per centimeter second (gl/(cm.s)) Pascal-second (Pa.s) Newton-second per square meter (Ns/m?) ic viscosity Square meter per second (m²/s) Square meter per second (m²/s) Square meter per second (m²/s) Square contimeter per second (m²/s) Subme Cubic foot (ft°) Cubic foot (ft°) Cubic inch (in°) Cubic inch (in°)
Radian per second (rad/s) Meter per second (m/s) Pascal-second (Pa.s) Poise	1,16x10-45 8,27x10-47 0,000277778 0,0166667 S 11.811,02 196,8504 1,943844 0,003016955 3,800 60 2,236936 Dynam 1 1 0,67197 0,7197 0,71	Day Fortnight Hour (h) Minute (') ar speed rpm peed Foot/hour (ft/h) Foot/second (ft/s) Knot (kn) Meter/nour (m/h) Meter/nour (m/h) Meter/nour (Mi/h) c viscosity Newton-second per square meter (Ns/m²) Kilogram per meter-second (kg/(m.s)) Pound per foot-second (lbm./ft.s)) Slug per foot second (lbm./ft.s)) Pound-force second (lbm./ft.s)) Pouse-second per square neter (lbr.s/ft²) Dyne second per square centimeter (dyn.s/cm²) Gram per centimeter second (g/(cm.s)) Pascal-second (m²/s) Square meter per second (m²/s) Square centimeter per second (m²/s) square centimeter per second (m²/s) square centime
Radian per second (rad/s) Meter per second (m/s) Pascal-second (Pa.s) Poise Stokes (St)	1,16x10-45 8,27x10-47 0,000277778 0,0166667 8,27x10-47 1,1811,02 196,8504 3,28084 1,943844 0,003016955 3,600 60 2,236936 Dynam 1 1 0,67197 0,62089 1 1 1 0,7197 0,62089 1 1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1	Day Fortnight Hour (h) Minute (') ar speed rpm peed Foot/hour (tt/h) Foot/hour (tt/h) Foot/second (tt/s) Knot (kn) Mach (Ma) Meter/ninute (nt/min) Mile/hour (Mi/h) Ciscosity Newton-second per square meter (Ns/m²) Kilogram per meter-second (kg/(m.s)) Pound per foot-second (lbm./ft.s)) Slug per foot second (lbm./ft.s)) Pound-force second per square foot (lbf.s/ft²) Dyne second per square cottimeter (dyn.s/cm²) Gram per centimeter second (g/(cm.s)) Pascal-second (Pa.s) Newton-second per square meter (Ns/m²) it viscosity Square meter per second (m²/s) Square centimeter per second (m²/s) Square centimeter per second (m²/s) Square centimeter per second (m²/s) Square (ntim²) Cubic foot (ft²) Cubic iont (in²) Cubic vard (yd²) Gallon (gal) Liter (l)
Radian per second (rad/s) Meter per second (m/s) Pascal-second (Pa.s) Poise Stokes (St)	1,16x10-45 8,27x10-47 0,000277778 0,0166667 S 11.811,02 196,8504 1,943844 0,003016955 3,800 60 2,236936 Dynam 1 1 0,67197 0,7197 0,71	Day Fortnight Hour (h) Minute (') ar speed rpm peed Foot/hour (ft/h) Foot/second (ft/s) Knot (kn) Meter/nour (m/h) Meter/nour (m/h) Meter/nour (Mi/h) c viscosity Newton-second per square meter (Ns/m²) Kilogram per meter-second (kg/(m.s)) Pound per foot-second (lbm./ft.s)) Slug per foot second (lbm./ft.s)) Pound-force second (lbm./ft.s)) Pouse-second per square neter (lbr.s/ft²) Dyne second per square centimeter (dyn.s/cm²) Gram per centimeter second (g/(cm.s)) Pascal-second (m²/s) Square meter per second (m²/s) Square centimeter per second (m²/s) square centimeter per second (m²/s) square centime


Table	14 2	>
Iable	14.2	-

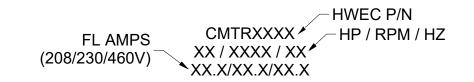
14.3 Standards

	Main standards used fo	or Rotating Ele	ectrical Machines
IEC	Title	NEMA	Title
IEC 60034-7	Rotating. Electrical Machines: Part 7: Classification types of construction, mounting, arrangements and terminal box position (IM Code)	NEMA MG 1 Part 4	Motor and Generators - Part 4: Dimensions, tolerances, and mounting
IEC 60034-6	Rotating. Electrical Machines: Part 6: Methods of cooling(IC Code)	NEMA MG 1 Part 6	Motor and Generators - Part 6: Rotating electrical machines - Method of cooling (IC code)
IEC 60034-1	Rotating Electrical Machines - Part 1: Rating and Performance	IEEE 112	Test procedures for polyphase induction motors and generators
IEC 60072- 1/2	Dimensions and output series for rotating electrical machines- Part 1 and Part 2	NEMA MG 1 Part 4	Motor and Generators - Part 4: Dimensions, tolerances, and mounting
IEC 60085	Electrical insulation - Thermal evaluation and designation	IEEE 1	General Principles for Temperature Limits in the Rating of Electric Equipment and for the Evaluation Electrical Insulation
IEC 60034-9	Rotating Electrical Machines: Part 9: Noise limits	NEMA MG 1 Part 9	Motor and Generators - Part 9: Sound power limits and measurement procedures
IEC 60034-1	Rotating Electrical Machines: Part 1: Rating and performance	NEMA MG 1	Motor and Generators
IEC 60079	Safety standard series applied to explosive atmospheres	UL 60079 UL 674 CSA C22.2 N°145	Electrical Apparatus for Explosive Gas Atmospheres Electric Motors and Generators for Use in Division 1 Hazardous (Classified) Locations Motors and Generators for Use in Hazardous Locations
IEC 60529	Degrees of protection provided by enclosures (IP Code)	NEMA MG 1 Part 5	Motor and Generators - Part 5: Classification of degrees of protection provided by enclosures for rotating machines

Table 14.3

	MOTOR DATA													
HWEC P/N	MAKE	POLES	FRAME	SHAFT	MOTOR	WEIGHT	MOUNTING							
	IVIANE	FULES	SIZE	DIA	LENGTH	VEIGHT	HOLES							
CMTR1001	BALDOR	6	256TC	1.625	23.67	255	4X 1/2-13 UNC							
CMTR1505	BALDOR	4	254TC	1.625	23.67	287	4X 1/2-13 UNC							
CMTR2001	WEG	6	284/6TC	1.875	23.55	398	4X 1/2-13 UNC							
CMTR2501	BALDOR	6	324TC	2.125	25.74	378	4X 5/8-11 UNC							
CMTR3001	WEG	6	324/6TC	2.125	25.50	539	4X 5/8-11 UNC							
CMTR3005	BALDOR	4	286TC	1.875	24.74	375	4X 1/2-13 UNC							
CMTR4005	BALDOR	4	324TC	2.125	25.24	378	4X 5/8-11 UNC							
CMTR5001	WEG	6	364/5TC	2.375	27.29	828	8X 5/8-11 UNC							
CMTR5005	BALDOR	4	326TC	2.125	25.79	549	4X 5/8-11 UNC							
CMTR6005	BALDOR	4	364TC	2.375	28.16	565	8X 5/8-11 UNC							

NOTES UNLESS OTHERWISE SPECIFIED:


1. VIEW FOR REFERENCE ONLY. ACTUAL APPEARANCE MAY BE DIFFERENT.

Е	ADDED MAKE COLUMN TO TABLE, PUR #1817	DRO 09/18/23						HC	DLLISTER-V	WHI	TNEY
	UPDATED 22" WHEEL				RRECTED VARIOUS				ELEVATOR C	O. LL	C
D	5500# AND 6000# RATINGS AT 100 FPM 2:1, PUR #1808	DRO 08/18/23	С		T31 2:1 30" WHEEL 1OTOR/RATINGS, PUR #1801	DRO 07/27/23	TITLE	М	OTOR, 208/230/460)V, C-F	LANGE
THIS DRAWING IS SUPPLIED AS A REPRESENTATION OF THE EQUIPMENT HOLLISTER-WHITNEY ELEVATOR CO. LLC ("MANUFACTURER") HAS AGREED TO SUPPLY. SLIGHT ADJUSTMENTS MAY OCCUR DURING MANUFACTURING AND INSTALLATION. ANY MODIFICATIONS NOT APPROVED IN WRITING BY MANUFACTURER MAY AFFECT OPERATION, VOIDS ANY WARRANTY AND						ECTION	DRAWN BY DRO	SCALE 1 1:6	MATERIAL		REFERENCE TOL. ALL DIMENSIONS REFERENCE UNLESS OTHERWISE SPECIFIED
	RELEASES MANUFACTURER OF DOCUMENT CONTAINS CONFIDENTIAL AND ANNOT BE REPRODUCED OR DIVULGED, II WRITTEN AUTHORIZATION FROM THI	PROPRIETARY	PART, WI				SHEET S	B	DATE 5/2/2023		CMTR SHEET 1 OF 10

SPEED	(ft/min)	50	75	100	125	150	ROPING DUT	200	250	300	350	400	450	500
CAP (lbs)	SHEAVE SIZE (in)	50	75	100	125	150	175	200	250	300	350	400	450	500
		CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1505	CMTR1505	CMTR1001	CMTR2001	CMTR3005	CMTR3005	CMTR2001	CMTR3005	CMTR3005
1000	22	1.8 / 426 / 22	2.6 / 639 / 32	3.5 / 851 / 43	4.3 / 1064 / 54	5.8 / 1277 / 43	6.8 / 1489 / 50	7.0 / 851 / 43	9.7 / 1064 / 54	11.6 / 1277 / 43	13.5 / 1489 / 50	16.4 / 1135 / 57	18.5 / 1277 / 43	20.5 / 1418 /
		18.7/19.3/9.7	18.7/19.3/9.7	18.7/19.3/9.7	18.7/19.3/9.7	21.7/21.7/10.9	21.7/21.7/10.9	29.6/28.6/14.3	30.2/29.2/14.6	42.5/41.4/20.7	42.5/41.4/20.7	45.7/42.0/21.0	63.9/59.5/29.8	63.9/59.5/29
		CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR2501	CMTR2501	CMTR250
1000	26	1.8 / 360 / 18	2.6 / 540 / 27	3.5 / 720 / 36	4.3 / 900 / 45	5.8 / 1080 / 54	6.8 / 1260 / 42	7.0 / 720 / 36	9.7 / 900 / 45	11.6 / 1080 / 54	13.5 / 1260 / 42	16.4 / 960 / 48	18.5 / 1080 / 54	20.5 / 1200
		20.4/20.7/10.4	20.4/20.7/10.4	20.4/20.7/10.4	20.4/20.7/10.4	21.9/22.0/11.0	24.7/24.3/12.2	32.0/30.5/15.3	34.7/32.8/16.4	34.6/32.7/16.4	48.7/46.5/23.2	56.2/54.0/27.0	56.2/54.0/27.0	56.2/54.0/2
		CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR3005	CMTR300
1000	30	1.8 / 312 / 16	2.6 / 468 / 24	3.5 / 624 / 32	4.3 / 780 / 39	5.8 / 936 / 47	6.8 / 1092 / 55	7.8 / 1248 / 42	9.7 / 780 / 39	11.6 / 936 / 47	13.5 / 1092 / 55	17.0 / 1248 / 42	19.1 / 1404 / 47	21.2 / 1560
		22.3/22.3/11.2	22.3/22.3/11.2	22.3/22.3/11.2	22.3/22.3/11.2	24.1/23.8/11.9	24.1/23.8/11.9	28.1/27.1/13.6	39.9/36.9/18.5	39.4/36.7/18.4	39.4/36.8/18.4	60.3/56.3/28.2	60.3/56.3/28.2	60.3/56.3/28
		CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1505	CMTR1505	CMTR2001	CMTR2001	CMTR3005	CMTR3005	CMTR2501	CMTR4005	CMTR400
1500	22	2.4 / 426 / 22	3.6 / 639 / 32	4.8 / 851 / 43	5.9 / 1064 / 54	7.8 / 1277 / 43	9.1 / 1489 / 50	9.3 / 851 / 43	12.6 / 1064 / 54	15.1 / 1277 / 43	17.6 / 1489 / 50	20.9 / 1135 / 57	23.5 / 1277 / 43	26.1 / 1418 /
		22.4/22.4/11.2	22.4/22.4/11.2	22.4/22.4/11.2	22.4/22.4/11.2	27.5/26.6/13.3	27.5/26.6/13.3	35.3/33.2/16.6	37.7/35.3/17.7	52.9/50.0/25.0	52.9/50.0/25.0	60.1/57.2/28.6	79.6/81.4/40.7	79.6/81.4/4
		CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR3001	CMTR3001	CMTR300
1500	26	2.4 / 360 / 18	3.6 / 540 / 27	4.8 / 720 / 36	5.9 / 900 / 45	7.8 / 1080 / 54	9.1 / 1260 / 42	9.3 / 720 / 36	12.6 / 900 / 45	15.1 / 1080 / 54	17.6 / 1260 / 42	20.9 / 960 / 48	23.5 / 1080 / 54	26.1 / 1200
		25.1/24.6/12.3	25.1/24.6/12.3	25.1/24.6/12.3	25.1/24.6/12.3	26.8/26.1/13.1	32.2/30.7/15.3	41.6/38.3/19.2	44.5/40.8/20.4	44.0/40.6/20.3	61.7/57.5/28.8	69.7/64.6/32.3	69.4/64.5/32.3	71.0/65.6/3
		CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR2001	CMTR4005	CMTR4005	CMTR400
1500	30	2.4 / 312 / 16	3.6 / 468 / 24	4.8 / 624 / 32	5.9 / 780 / 39	7.8 / 936 / 47	9.1 / 1092 / 55	10.3 / 1248 / 42	12.6 / 780 / 39	15.1 / 936 / 47	17.6 / 1092 / 55	21.6 / 1248 / 42	24.3 / 1404 / 47	27.0 / 1560 /
		28.0/27.1/13.6	28.0/27.1/13.6	28.0/27.1/13.6	28.0/27.1/13.6	29.9/28.8/14.4	29.9/28.8/14.4	37.3/34.9/17.5	52.5/47.0/23.5	51.5/46.5/23.3	50.9/46.2/23.1	75.3/77.9/39.0	75.3/77.9/39.0	75.3/77.9/3
		CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1505	CMTR1505	CMTR2001	CMTR2001	CMTR3005	CMTR3005	CMTR3001	CMTR4005	CMTR400
2000	22	3.1 / 426 / 22	4.6 / 639 / 32	6.1 / 851 / 43	7.6 / 1064 / 54	9.7 / 1277 / 43	11.3 / 1489 / 50	11.6 / 851 / 43	15.4 / 1064 / 54	18.5 / 1277 / 43	21.6 / 1489 / 50	25.4 / 1135 / 57	28.5 / 1277 / 43	31.7 / 1418
		26.5/25.8/12.9	26.5/25.8/12.9	26.5/25.8/12.9	26.5/25.8/12.9	34.1/32.2/16.1	34.1/32.2/16.1	43.5/39.9/20.0	45.9/42.1/21.1	64.1/59.7/29.9	64.1/59.7/29.9	71.2/66.0/33.0	95.7/94.4/47.2	95.7/94.4/4
		CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR2001	CMTR3005	CMTR2001	CMTR2501	CMTR2501	CMTR4005	CMTR5001	CMTR5001	CMTR500
2000	26	3.1 / 360 / 18	4.6 / 540 / 27	6.1 / 720 / 36	7.6 / 900 / 45	9.7 / 1080 / 54	11.3 / 1260 / 42	11.6 / 720 / 36	15.4 / 900 / 45	18.5 / 1080 / 54	21.6 / 1260 / 42	25.4 / 960 / 48	28.5 / 1080 / 54	31.7 / 1200
		30.2/29.1/14.6	30.2/29.1/14.6	30.2/29.1/14.6	30.2/29.1/14.6	29.9/28.9/14.5	42.1/41.1/20.6	52.8/47.2/23.6	56.3/54.2/27.1	56.3/54.2/27.1	74.7/77.4/38.7	82.4/77.1/38.6	82.3/77.1/38.6	84.0/78.3/3
		CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR2501	CMTR2501	CMTR2501	CMTR4005	CMTR4005	CMTR400
2000	30	3.1 / 312 / 16	4.6 / 468 / 24	6.1 / 624 / 32	7.6 / 780 / 39	9.7 / 936 / 47	11.3 / 1092 / 55	12.9 / 1248 / 42	15.4 / 780 / 39	18.5 / 936 / 47	21.6 / 1092 / 55	26.2 / 1248 / 42	29.5 / 1404 / 47	32.8 / 1560 /
		34.6/31.8/15.9	32.9/30.9/15.5	32.3/30.6/15.3	32.0/30.5/15.3	33.6/31.9/16.0	33.7/32.1/16.1	47.2/45.2/22.6	64.4/60.6/30.3	64.4/60.6/30.3	64.4/60.6/30.3	90.2/89.9/45.0	90.2/89.9/45.0	90.2/89.9/4
		CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR3005	CMTR2001	CMTR2501	CMTR4005	CMTR4005			
2500	22	3.7 / 426 / 22	5.5 / 639 / 32	7.3 / 851 / 43	9.2 / 1064 / 54	11.6 / 1277 / 43	13.6 / 1489 / 50	13.9 / 851 / 43	18.3 / 1064 / 54	22.0 / 1277 / 43	25.6 / 1489 / 50	GT31	GT31	GT31
		29.6/28.3/14.2	29.5/28.4/14.2	29.2/28.2/14.1	29.0/28.2/14.1	42.6/41.5/20.8	42.6/41.5/20.8	53.1/47.7/23.9	56.6/54.4/27.2	75.0/77.7/38.9	75.0/77.7/38.9			
		CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR2501	CMTR2501	CMTR2501	CMTR4005			
2500	26	3.7 / 360 / 18	5.5 / 540 / 27	7.3 / 720 / 36	9.2 / 900 / 45	11.6 / 1080 / 54	13.6 / 1260 / 42	13.9 / 720 / 36	18.3 / 900 / 45	22.0 / 1080 / 54	25.6 / 1260 / 42	GT31	GT31	GT31
		35.2/32.4/16.2	34.3/32.1/16.1	33.6/31.7/15.9	33.2/31.5/15.8	34.8/32.9/16.5	48.8/46.6/23.3	62.8/59.4/29.7	66.2/62.1/31.1	66.2/62.1/31.1	87.5/87.7/43.9			
		CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR3001	CMTR3001	CMTR3001			
2500	30	3.7 / 312 / 16	5.5 / 468 / 24	7.3 / 624 / 32	9.2 / 780 / 39	11.6 / 936 / 47	13.6 / 1092 / 55	15.5 / 1248 / 42	18.3 / 780 / 39	22.0 / 936 / 47	25.6 / 1092 / 55	GT31	GT31	GT31
		42.9/37.7/18.9	40.1/36.5/18.3	38.6/35.7/17.9	37.9/35.3/17.7	39.7/36.9/18.5	39.4/36.8/18.4	55.4/52.1/26.1	76.6/69.8/34.9	75.4/69.2/34.6	74.9/69.0/34.5			

NOTES UNLESS OTHERWISE SPECIFIED:

- SEE SHEET 1 FOR FRAME SIZE INFORMATION.
 CELL FORMAT IS AS FOLLOWS:

E	ADDED MAKE COLUMN TO TABLE, PUR #1817	DRO 09/18/23						HC	DLLISTER-V	WHI	TNEY
	UPDATED 22" WHEEL				RRECTED VARIOUS				ELEVATOR C	O. LL	C
D	5500# AND 6000# RATINGS AT 100 FPM	DRO	С		T31 2:1 30" WHEEL		TITLE				
	2:1, PUR #1808	08/18/23		M	IOTOR/RATINGS, PUR #1801	07/27/23		M	OTOR, 208/230/460)V, C-F	LANGE
HOL	HIS DRAWING IS SUPPLIED AS A REPRESEN LISTER-WHITNEY ELEVATOR CO. LLC ("MAN	UFACTURER") H	AS AGREE	ED TO	THIRD ANGLE PRO	IECTION	DRAWN BY	SCALE N	MATERIAL		REFERENCE TOL.
-	PLY. SLIGHT ADJUSTMENTS MAY OCCUR D INSTALLATION. ANY MODIFICATIONS NOT / ANUFACTURER MAY AFFECT OPERATION, 1 ANUFACTURER MAY AFFECT OPERATION.	APPROVED IN W OIDS ANY WAR	RITING B	Y			DRO		N/A		ALL DIMENSIONS REFERENCE UNLESS OTHERWISE SPECIFIED
	RELEASES MANUFACTURER OF DOCUMENT CONTAINS CONFIDENTIAL AND CANNOT BE REPRODUCED OR DIVULGED, I	PROPRIETARY					SHEET S		DATE		CMTR
	WRITTEN AUTHORIZATION FROM TH			111001				В	5/2/2023		SHEET 2 OF 10

GT11 1:1 ROPING DUTY TABLES														
SPEED	(ft/min)	50	75	100	125	150	175	200	250	300	350	400	450	500
CAP (lbs)	SHEAVE SIZE (in)													
		CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR3005	CMTR2501						
3000	22	4.3 / 426 / 22	6.5 / 639 / 32	8.6 / 851 / 43	10.8 / 1064 / 54	13.6 / 1277 / 43	15.8 / 1489 / 50	16.2 / 851 / 43	GT31	GT31	GT31	GT31	GT31	GT31
		34.7/32.3/16.2	33.5/31.6/15.8	33.3/31.6/15.8	33.0/31.4/15.7	48.3/46.1/23.1	48.3/46.1/23.1	62.1/58.8/29.4						
3000	26	CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR3001						
		4.3 / 360 / 18	6.5 / 540 / 27	8.6 / 720 / 36	10.8 / 900 / 45	13.6 / 1080 / 54	15.8 / 1260 / 42	16.2 / 720 / 36	GT31	GT31	GT31	GT31	GT31	GT31
		42.9/38.2/19.1	39.6/36.4/18.2	38.9/36.1/18.1	38.3/35.7/17.9	39.8/37.1/18.6	55.9/52.6/26.3	73.8/67.5/33.8						
3000	30	CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR3005						
		4.3 / 312 / 16	6.5 / 468 / 24	8.6 / 624 / 32	10.8 / 780 / 39	13.6 / 936 / 47	15.8 / 1092 / 55	18.1 / 1248 / 42	GT31	GT31	GT31	GT31	GT31	GT31
		57.0/46.2/23.1	47.5/42.2/21.1	45.7/41.3/20.7	44.4/40.6/20.3	46.1/42.1/21.1	45.9/42.0/21.0	63.9/59.5/29.8						

NOTES UNLESS OTHERWISE SPECIFIED:


- SEE SHEET 1 FOR FRAME SIZE INFORMATION.
 CELL FORMAT IS AS FOLLOWS:

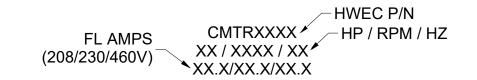
E	ADDED MAKE COLUMN TO TABLE, PUR #1817	DRO 09/18/23						HC	OLLISTER-V	WHI	TNEY	
	UPDATED 22" WHEEL				RRECTED VARIOUS		ELEVATOR CO. LLC					
D	5500# AND 6000# RATINGS AT 100 FPM 2:1, PUR #1808	DRO 08/18/23	С				MOTOR, 208/230/460V, C-FLANGE					
HOL	HIS DRAWING IS SUPPLIED AS A REPRESEN LISTER-WHITNEY ELEVATOR CO. LLC ("MANI PPLY. SLIGHT ADJUSTMENTS MAY OCCUR D	THIRD ANGLE PRO	DRAWN BY	SCALE N	MATERIAL		REFERENCE TOL.					
	INSTALLATION. ANY MODIFICATIONS NOT APPROVED IN WRITING BY MANUFACTURER MAY AFFECT OPERATION, VOIDS ANY WARRANTY AND				$\square \square $		DRO		N/A		UNLESS OTHERWISE SPECIFIED	
	RELEASES MANUFACTURER OF ALL LIABILITY. THIS DOCUMENT CONTAINS CONFIDENTIAL AND PROPRIETARY INFORMATION THAT CANNOT BE REPRODUCED OR DIVULGED, IN WHOLE OR IN PART, WITHOUT						SHEET S				CMTR	
	WRITTEN AUTHORIZATION FROM THE MANUFACTURER.							B 5/2/2023		SHEET 3 OF 10		

SPEED	(ft/min)	50	75	100	125	150	175	200	225	250	275	300	325	350	375	400
CAP (lbs)	SHEAVE SIZE (in)			100	120		175	200	223	200	215		020		575	+00
	()	CMTR1001	CMTR1505	CMTR1001	CMTR1001	CMTR1505	CMTR1505	CMTR1001	CMTR1505	CMTR1505						
1000	22	1.8 / 851 / 43	2.7 / 1277 / 43	3.3 / 851 / 43	4.1 / 1064 / 54	5.5 / 1277 / 43	6.4 / 1489 / 50	7.0 / 1135 / 57	8.8 / 1277 / 43	9.7 / 1418 / 48	N/A	N/A	N/A	N/A	N/A	N/A
		15.0/16.4/8.2	14.5/15.7/7.8	18.1/18.9/9.5	18.1/18.9/9.5	20.7/20.8/10.4	20.7/20.8/10.4	24.0/23.7/11.9	30.8/29.5/14.8	30.8/29.5/14.8						
		CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1505	CMTR1001	CMTR1001	CMTR1001						
1000	26	1.8 / 720 / 36	2.7 / 1080 / 54	3.3 / 720 / 36	4.1 / 900 / 45	5.5 / 1080 / 54	6.4 / 1260 / 42	7.0 / 960 / 48	8.8 / 1080 / 54	9.7 / 1200 / 60	N/A	N/A	N/A	N/A	N/A	N/A
		15.6/16.9/8.5	15.6/16.9/8.5	19.7/20.1/10.1	19.7/20.1/10.1	21.0/21.2/10.6	23.4/23.2/11.6	27.1/26.4/13.2	29.4/28.4/14.2	29.4/28.4/14.2						
		CMTR1001	CMTR1001	CMTR1505	CMTR1001	CMTR1001	CMTR1001	CMTR1505	CMTR1505	CMTR1505	CMTR2001	CMTR3005	CMTR3005	CMTR3005	CMTR3005	CMTR3005
1000	30	1.8 / 624 / 32	2.7 / 936 / 47	3.6 / 1248 / 42	4.1 / 780 / 39	5.5 / 936 / 47	6.4 / 1092 / 55	7.3 / 1248 / 42	9.1 / 1404 / 47	10.1 / 1560 / 52	10.7 / 1144 / 58	11.7 / 1248 / 42	12.6 / 1352 / 46	13.6 / 1456 / 49	16.0 / 1560 / 52	17.1 / 1664 /
		16.3/17.4/8.7	16.3/17.4/8.7	16.4/17.3/8.7	21.4/21.5/10.8	23.0/22.9/11.5	23.0/22.9/11.5	26.4/25.7/12.9	29.0/28.0/14.0	29.0/28.0/14.0	30.8/29.7/14.9	43.4/42.2/21.1	43.4/42.2/21.1	43.4/42.2/21.1	47.0/45.0/22.5	47.0/45.0/22
		CMTR1001	CMTR1505	CMTR1001	CMTR1001	CMTR1505	CMTR1505	CMTR1001	CMTR3005	CMTR3005						
1500	22	2.5 / 851 / 43	3.7 / 1277 / 43	4.5 / 851 / 43	5.6 / 1064 / 54	7.3 / 1277 / 43	8.5 / 1489 / 50	9.3 / 1135 / 57	11.4 / 1277 / 43	12.6 / 1418 / 48	N/A	N/A	N/A	N/A	N/A	N/A
		16.3/17.5/8.8	16.5/17.3/8.7	21.5/21.6/10.8	21.5/21.6/10.8	25.9/25.3/12.7	25.9/25.3/12.7	29.8/28.7/14.4	41.9/40.9/20.5	41.9/40.9/20.5						
		CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR2001						
1500	26	2.5 / 720 / 36	3.7 / 1080 / 54	4.5 / 720 / 36	5.6 / 900 / 45	7.3 / 1080 / 54	8.5 / 1260 / 42	9.3 / 960 / 48	11.4 / 1080 / 54	12.6 / 1200 / 60	N/A	N/A	N/A	N/A	N/A	N/A
		17.3/18.3/9.2	17.3/18.3/9.2	24.0/23.7/11.8	24.0/23.7/11.8	25.5/24.9/12.5	30.1/28.9/14.5	32.0/30.6/15.3	34.1/32.3/16.2	34.8/32.8/16.4						
		CMTR1001	CMTR1001	CMTR1505	CMTR1001	CMTR1001	CMTR1001	CMTR1505	CMTR1505	CMTR1505	CMTR2001	CMTR3005	CMTR3005	CMTR3005	CMTR3005	CMTR300
1500	30	2.5 / 624 / 32	3.7 / 936 / 47	5.0 / 1248 / 42	5.6 / 780 / 39	7.3 / 936 / 47	8.5 / 1092 / 55	9.7 / 1248 / 42	11.8 / 1404 / 47	13.1 / 1560 / 52	13.9 / 1144 / 58	15.2 / 1248 / 42	16.4 / 1352 / 46	17.7 / 1456 / 49	20.4 / 1560 / 52	21.7 / 1664 /
		18.5/19.2/9.6	18.5/19.2/9.6	19.7/20.0/10.0	26.6/25.9/13.0	28.4/27.4/13.7	28.4/27.4/13.7	34.7/32.8/16.4	37.8/35.3/17.7	37.8/35.3/17.7	38.5/36.0/18.0	54.3/51.2/25.6	54.3/51.2/25.6	54.3/51.2/25.6	58.1/54.4/27.2	58.1/54.4/27
		CMTR1001	CMTR1505	CMTR1001	CMTR1001	CMTR1505	CMTR1505	CMTR2001	CMTR3005	CMTR3005						
2000	22	3.2 / 851 / 43	4.7 / 1277 / 43	5.7 / 851 / 43	7.1 / 1064 / 54	9.1 / 1277 / 43	10.6 / 1489 / 50	11.7 / 1135 / 57	14.0 / 1277 / 43	15.5 / 1418 / 48	N/A	N/A	N/A	N/A	N/A	N/A
		17.9/18.7/9.4	18.8/19.3/9.7	25.3/24.7/12.4	25.3/24.7/12.4	31.8/30.3/15.2	31.8/30.3/15.2	33.4/31.8/15.9	49.6/47.2/23.6	49.6/47.2/23.6						
		CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR2001						
2000	26	3.2 / 720 / 36	4.7 / 1080 / 54	5.7 / 720 / 36	7.1 / 900 / 45	9.1 / 1080 / 54	10.6 / 1260 / 42	11.7 / 960 / 48	14.0 / 1080 / 54	15.5 / 1200 / 60	N/A	N/A	N/A	N/A	N/A	N/A
		19.4/19.9/10.0	19.4/19.9/10.0	28.6/27.7/13.9	28.6/27.7/13.9	30.2/29.1/14.6	37.8/35.4/17.7	38.7/36.1/18.1	40.9/38.0/19.0	42.0/38.8/19.4						
		CMTR1001	CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR3005	CMTR3005	CMTR2001	CMTR3005	CMTR3005	CMTR3005	CMTR3005	CMTR3008
2000	30	3.2 / 624 / 32	4.7 / 936 / 47	6.3 / 1248 / 42	7.1 / 780 / 39	9.1 / 936 / 47	10.6 / 1092 / 55	12.1 / 1248 / 42	14.5 / 1404 / 47	16.1 / 1560 / 52	17.1 / 1144 / 58	18.6 / 1248 / 42	20.2 / 1352 / 46	21.7 / 1456 / 49	24.7 / 1560 / 52	26.4 / 1664 /
		21.0/21.2/10.6	21.0/21.2/10.6	23.4/23.2/11.6	30.3/29.1/14.6	31.8/30.4/15.2	31.8/30.4/15.2	44.7/43.2/21.6	47.1/45.1/22.6	47.1/45.1/22.6	47.0/43.0/21.5	65.9/61.3/30.7	65.9/61.3/30.7	65.9/61.3/30.7	69.9/64.9/32.5	69.9/64.9/32
		CMTR1001	CMTR1505	CMTR1001	CMTR1001	CMTR3005	CMTR3005	CMTR2001	CMTR3005	CMTR3005						
2500	22	3.8 / 851 / 43	5.7 / 1277 / 43	6.9 / 851 / 43	8.6 / 1064 / 54	10.9 / 1277 / 43	12.7 / 1489 / 50	14.0 / 1135 / 57	16.6 / 1277 / 43	18.5 / 1418 / 48	N/A	N/A	N/A	N/A	N/A	N/A
		19.7/20.1/10.1	21.4/21.5/10.8	29.2/28.2/14.1	29.2/28.2/14.1	40.4/39.8/19.9	40.4/39.8/19.9	39.1/36.5/18.3	57.9/54.2/27.1	57.9/54.2/27.1						
		CMTR1001	CMTR1001	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR2001	CMTR2001	CMTR2001						
2500	26	3.8 / 720 / 36	5.7 / 1080 / 54	6.9 / 720 / 36	8.6 / 900 / 45	10.9 / 1080 / 54	12.7 / 1260 / 42	14.0 / 960 / 48	16.6 / 1080 / 54	18.5 / 1200 / 60	N/A	N/A	N/A	N/A	N/A	N/A
		21.7/21.8/10.9	21.7/21.8/10.9	31.6/30.2/15.1	31.4/30.1/15.1	32.8/31.3/15.7	46.1/44.3/22.2	46.2/42.2/21.1	48.8/44.4/22.2	49.9/45.3/22.7						
0.545		CMTR1001	CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR3005	CMTR3005	CMTR2501	CMTR4005	CMTR4005	CMTR4005	CMTR4005	CMTR400
2500	30	3.8 / 624 / 32	5.7 / 936 / 47	7.6 / 1248 / 42	8.6 / 780 / 39	10.9 / 936 / 47	12.7 / 1092 / 55	14.5 / 1248 / 42	17.2 / 1404 / 47	19.1 / 1560 / 52	20.3 / 1144 / 58	22.1 / 1248 / 42	24.0 / 1352 / 46	25.8 / 1456 / 49	29.1 / 1560 / 52	31.0 / 1664 /
		23.9/23.6/11.8	23.9/23.6/11.8	27.6/26.8/13.4	35.6/33.5/16.8	37.2/34.8/17.4	37.0/34.8/17.4	52.1/49.3/24.7	54.7/51.5/25.8	54.7/51.5/25.8	58.1/55.6/27.8	77.0/79.3/39.7	77.0/79.3/39.7	77.0/79.3/39.7	80.7/82.2/41.1	80.7/82.2/4


- SEE SHEET 1 FOR FRAME SIZE INFORMATION.
 CELL FORMAT IS AS FOLLOWS:

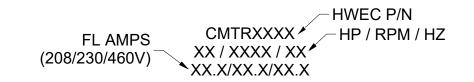
E	ADDED MAKE COLUMN TO TABLE, PUR #1817	DRO 09/18/23						H	OLLISTER-	WHI	TNEY
	UPDATED 22" WHEEL				RRECTED VARIOUS				ELEVATOR C	O. LL	C
D	5500# AND 6000# RATINGS AT 100 FPM 2:1, PUR #1808	DRO 08/18/23	С		T31 2:1 30" WHEEL IOTOR/RATINGS, PUR #1801	DRO 07/27/23	TITLE	N	10TOR, 208/230/460)V, C-F	LANGE
HOL	HIS DRAWING IS SUPPLIED AS A REPRESEN LISTER-WHITNEY ELEVATOR CO. LLC ("MAN PPLY. SLIGHT ADJUSTMENTS MAY OCCUR D INSTALLATION. ANY MODIFICATIONS NOT /	UFACTURER") H	AS AGREE	ED TO S AND	THIRD ANGLE PRO	IECTION	BY	SCALE	MATERIAL		REFERENCE TOL.
N	ANUFACTURER MAY AFFECT OPERATION, V RELEASES MANUFACTURER OF	OIDS ANY WAR					DRO		-		UNLESS OTHERWISE SPECIFIED
	S DOCUMENT CONTAINS CONFIDENTIAL ANE CANNOT BE REPRODUCED OR DIVULGED, I	PROPRIETARY					SHEET S		DATE		CMTR
	WRITTEN AUTHORIZATION FROM TH							В	5/2/2023		SHEET 4 OF 10

	(a . · · · ·		1				-		TY TABLES	-			1			
SPEED	(ft/min)	50	75	100	125	150	175	200	225	250	275	300	325	350	375	400
CAP (lbs)	SHEAVE SIZE															
· · /	(in)															
		CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR3005	CMTR3005	CMTR2001	CMTR3005	CMTR3005						
3000	22	4.5 / 851 / 43	6.7 / 1277 / 43	8.1 / 851 / 43	10.1 / 1064 / 54	12.7 / 1277 / 43	14.8 / 1489 / 50	16.3 / 1135 / 57	19.2 / 1277 / 43	21.4 / 1418 / 48	N/A	N/A	N/A	N/A	N/A	N/A
		21.7/21.7/10.9	24.3/23.9/12.0	31.4/30.0/15.0	31.2/30.0/15.0	45.6/43.9/22.0	45.6/43.9/22.0	45.4/41.7/20.9	66.4/61.8/30.9	66.4/61.8/30.9						
		CMTR1001	CMTR1001	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR2501	CMTR2501	CMTR2501						
3000	26	4.5 / 720 / 36	6.7 / 1080 / 54	8.1 / 720 / 36	10.1 / 900 / 45	12.7 / 1080 / 54	14.8 / 1260 / 42	16.3 / 960 / 48	19.2 / 1080 / 54	21.4 / 1200 / 60	N/A	N/A	N/A	N/A	N/A	N/A
		24.2/23.8/11.9	24.2/23.8/11.9	36.4/34.1/17.1	36.0/33.9/17.0	37.4/35.1/17.6	52.6/49.7/24.9	55.9/53.8/26.9	58.3/55.7/27.9	58.3/55.7/27.9						
		CMTR1001	CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR3005	CMTR3005	CMTR2501	CMTR4005	CMTR4005	CMTR4005	CMTR4005	CMTR4005
3000	30	4.5 / 624 / 32	6.7 / 936 / 47	9.0 / 1248 / 42	10.1 / 780 / 39	12.7 / 936 / 47	14.8 / 1092 / 55	16.9 / 1248 / 42	19.9 / 1404 / 47	22.1 / 1560 / 52	23.5 / 1144 / 58	25.6 / 1248 / 42	27.8 / 1352 / 46	29.9 / 1456 / 49	33.5 / 1560 / 52	35.7 / 1664 / 5
		26.8/26.1/13.1	26.8/26.1/13.1	32.2/30.7/15.4	41.5/38.2/19.1	43.0/39.6/19.8	42.7/39.5/19.8	60.0/56.0/28.0	62.6/58.4/29.2	62.6/58.4/29.2	66.8/62.6/31.3	88.2/88.3/44.2	88.2/88.3/44.2	88.2/88.3/44.2	92.0/91.4/45.7	92.0/91.4/45.
		CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR3005	CMTR3005	CMTR2001	CMTR4005	CMTR4005						
3500	22	5.2 / 851 / 43	7.8 / 1277 / 43	9.3 / 851 / 43	11.6 / 1064 / 54	14.5 / 1277 / 43	16.9 / 1489 / 50	18.6 / 1135 / 57	21.8 / 1277 / 43	24.3 / 1418 / 48	N/A	N/A	N/A	N/A	N/A	N/A
		23.7/23.5/11.7	27.4/26.6/13.3	35.3/33.2/16.6	35.0/33.1/16.6	51.1/48.5/24.3	51.1/48.5/24.3	52.0/47.1/23.6	74.5/77.4/38.7	74.5/77.4/38.7						
		CMTR1001	CMTR1001	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR2501	CMTR2501	CMTR2501						
3500	26	5.2 / 720 / 36	7.8 / 1080 / 54	9.3 / 720 / 36	11.6 / 900 / 45	14.5 / 1080 / 54	16.9 / 1260 / 42	18.6 / 960 / 48	21.8 / 1080 / 54	24.3 / 1200 / 60	N/A	N/A	N/A	N/A	N/A	N/A
		26.7/26.0/13.0	26.7/26.0/13.0	41.6/38.3/19.2	41.0/37.9/19.0	42.3/39.2/19.6	59.4/55.6/27.8	63.2/59.7/29.9	65.8/61.8/30.9	65.8/61.8/30.9						
		CMTR1001	CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR3005	CMTR3005	CMTR3001	CMTR5005	CMTR5005	CMTR5005		
3500	30	5.2 / 624 / 32	7.8 / 936 / 47	10.3 / 1248 / 42	11.6 / 780 / 39	14.5 / 936 / 47	16.9 / 1092 / 55	19.3 / 1248 / 42	22.6 / 1404 / 47	25.1 / 1560 / 52	26.7 / 1144 / 58	29.1 / 1248 / 42	31.5 / 1352 / 46	34.0 / 1456 / 49	N/A	N/A
		29.9/28.8/14.4	29.9/28.8/14.4	37.2/34.9/17.5	47.9/43.4/21.7	49.3/44.7/22.4	48.8/44.4/22.2	68.1/63.3/31.7	70.9/65.8/32.9	70.9/65.8/32.9	74.1/68.4/34.2	104.0/95.8/47.9	104.0/95.8/47.9	104.0/95.8/47.9		
		CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR3005	CMTR3005	CMTR2501	CMTR4005	CMTR4005						
4000	22	5.9 / 851 / 43	8.8 / 1277 / 43	10.5 / 851 / 43	13.1 / 1064 / 54	16.3 / 1277 / 43	19.0 / 1489 / 50	21.0 / 1135 / 57	24.5 / 1277 / 43	27.2 / 1418 / 48	N/A	N/A	N/A	N/A	N/A	N/A
		25.9/25.3/12.7	30.8/29.4/14.7	39.4/36.6/18.3	39.0/36.4/18.2	56.8/53.3/26.7	56.8/53.3/26.7	60.3/57.4/28.7	82.7/83.8/41.9	82.7/83.8/41.9						
		CMTR1001	CMTR1001	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR3001	CMTR3001	CMTR3001						
4000	26	5.9 / 720 / 36	8.8 / 1080 / 54	10.5 / 720 / 36	13.1 / 900 / 45	16.3 / 1080 / 54	19.0 / 1260 / 42	21.0 / 960 / 48	24.5 / 1080 / 54	27.2 / 1200 / 60	N/A	N/A	N/A	N/A	N/A	N/A
		29.4/28.4/14.2	29.4/28.4/14.2	47.2/42.8/21.4	46.3/42.2/21.1	47.6/43.4/21.7	66.5/61.8/30.9	70.0/64.9/32.5	72.2/66.8/33.4	74.0/68.0/34.0						
		CMTR2001	CMTR2001	CMTR3005	CMTR2001	CMTR2501	CMTR2501	CMTR4005	CMTR4005	CMTR4005	CMTR5001	CMTR5005				
4000	30	5.9 / 624 / 32	8.8 / 936 / 47	11.7 / 1248 / 42	13.1 / 780 / 39	16.3 / 936 / 47	19.0 / 1092 / 55	21.7 / 1248 / 42	25.3 / 1404 / 47	28.1 / 1560 / 52	29.9 / 1144 / 58	32.6 / 1248 / 42	N/A	N/A	N/A	N/A
		31.4/29.9/15.0	31.0/29.7/14.9	43.4/42.2/21.1	54.9/48.9/24.5	57.0/54.7/27.4	57.0/54.7/27.4	75.6/78.2/39.1	78.1/80.2/40.1	78.1/80.2/40.1	81.3/76.3/38.2	116.4/106.2/53.1				
		CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR3005										
4500	22	6.5 / 851 / 43	9.8 / 1277 / 43	11.7 / 851 / 43	14.6 / 1064 / 54	18.1 / 1277 / 43	GT31	GT31	GT31	GT31	N/A	N/A	N/A	N/A	N/A	N/A
		28.1/27.2/13.6	34.3/32.4/16.2	43.9/40.2/20.1	43.2/39.9/20.0	62.7/58.4/29.2										
		CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR2001										
4500	26	6.5 / 720 / 36	9.8 / 1080 / 54	11.7 / 720 / 36	14.6 / 900 / 45	18.1 / 1080 / 54	GT31	GT31	GT31	GT31	N/A	N/A	N/A	N/A	N/A	N/A
		30.5/29.2/14.6	30.1/29.1/14.6	53.4/47.6/23.8	52.0/46.8/23.4	53.1/47.9/24.0										
		CMTR2001	CMTR2001	CMTR3005	CMTR2501	CMTR2501										
4500	30	6.5 / 624 / 32	9.8 / 936 / 47	13.0 / 1248 / 42	14.6 / 780 / 39	18.1 / 936 / 47	GT31	GT31	GT31	GT31	N/A	N/A	N/A	N/A	N/A	N/A
		34.6/32.5/16.3	33.9/32.1/16.1	47.5/45.5/22.8	60.9/57.8/28.9	62.9/59.5/29.7										


- SEE SHEET 1 FOR FRAME SIZE INFORMATION.
 CELL FORMAT IS AS FOLLOWS:

E	ADDED MAKE COLUMN TO TABLE, PUR #1817	DRO 09/18/23						HC	OLLISTER-V	WHI	TNEY
	UPDATED 22" WHEEL				RRECTED VARIOUS				ELEVATOR C	O. LL	С
D	5500# AND 6000# RATINGS AT 100 FPM 2:1, PUR #1808	DRO 08/18/23	С		T31 2:1 30" WHEEL IOTOR/RATINGS, PUR #1801	DRO 07/27/23	TITLE	М	OTOR, 208/230/460)V, C-F	LANGE
HOL	HIS DRAWING IS SUPPLIED AS A REPRESEN LISTER-WHITNEY ELEVATOR CO. LLC ("MANI PPLY. SLIGHT ADJUSTMENTS MAY OCCUR D	JFACTURER") H	AS AGRE	ED TO	THIRD ANGLE PRO	IECTION	DRAWN BY	SCALE	MATERIAL		REFERENCE TOL.
	INSTALLATION. ANY MODIFICATIONS NOT / IANUFACTURER MAY AFFECT OPERATION, RELEASES MANUFACTURER OF	APPROVED IN WI OIDS ANY WAR	RITING B	Y			DRO		N/A		UNLESS OTHERWISE SPECIFIED
	S DOCUMENT CONTAINS CONFIDENTIAL AND CANNOT BE REPRODUCED OR DIVULGED, I	PROPRIETARY					SHEET S		DATE		CMTR
	WRITTEN AUTHORIZATION FROM TH							В	5/2/2023		SHEET 5 OF 10

			1	1	1			ROPING DUT	1	1	1	1	1	1	1	
SPEED	(ft/min)	50	75	100	125	150	175	200	225	250	275	300	325	350	375	400
CAP (lbs)	SHEAVE SIZE															
	(in)															
		CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR3005										
5000	22	7.2 / 851 / 43	10.8 / 1277 / 43	12.9 / 851 / 43	16.1 / 1064 / 54	19.9 / 1277 / 43	GT31	GT31	GT31	GT31	N/A	N/A	N/A	N/A	N/A	N/A
		30.3/29.2/14.6	38.0/35.5/17.8	48.6/44.0/22.0	47.7/43.6/21.8	68.7/63.8/31.9										
		CMTR2001	CMTR2001	CMTR2501	CMTR2501	CMTR2501										
5000	26	7.2 / 720 / 36	10.8 / 1080 / 54	12.9 / 720 / 36	16.1 / 900 / 45	19.9 / 1080 / 54	GT31	GT31	GT31	GT31	N/A	N/A	N/A	N/A	N/A	N/A
		32.8/31.1/15.6	32.6/31.1/15.6	58.4/55.9/28.0	58.4/55.9/28.0	60.1/57.2/28.6										
		CMTR2001	CMTR2001	CMTR3005	CMTR2501	CMTR3001										
5000	30	7.2 / 624 / 32	10.8 / 936 / 47	14.3 / 1248 / 42	16.1 / 780 / 39	19.9 / 936 / 47	GT31	GT31	GT31	GT31	N/A	N/A	N/A	N/A	N/A	N/A
		37.6/34.9/17.5	36.9/34.6/17.3	51.7/48.9/24.5	67.0/62.7/31.4	68.2/63.4/31.7										
		CMTR2001	CMTR3005	CMTR2001												
5500	22	7.9 / 851 / 43	11.8 / 1277 / 43	14.1 / 851 / 43	GT31	GT31	GT31	GT31	GT31	GT31	N/A	N/A	N/A	N/A	N/A	N/A
		30.7/29.5/14.8	43.0/41.8/20.9	53.6/48.0/24.0												
		CMTR2001	CMTR2001	CMTR2501												
5500	26	7.9 / 720 / 36	11.8 / 1080 / 54	14.1 / 720 / 36	GT31	GT31	GT31	GT31	GT31	GT31	N/A	N/A	N/A	N/A	N/A	N/A
		35.6/33.4/16.7	35.1/33.2/16.6	63.6/60.0/30.0												
		CMTR2001	CMTR2001	CMTR3005												
5500	30	7.9 / 624 / 32	11.8 / 936 / 47	15.7 / 1248 / 42	GT31	GT31	GT31	GT31	GT31	GT31	N/A	N/A	N/A	N/A	N/A	N/A
		41.2/37.8/18.9	40.0/37.2/18.6	56.0/52.6/26.3												
		CMTR2001	CMTR3005	CMTR2501												
6000	22	8.5 / 851 / 43	12.8 / 1277 / 43	15.3 / 851 / 43	GT31	GT31	GT31	GT31	GT31	GT31	N/A	N/A	N/A	N/A	N/A	N/A
		33.0/31.3/15.7	45.9/44.2/22.1	58.7/56.1/28.1												
		CMTR2001	CMTR2001	CMTR3001												
6000	26	8.5 / 720 / 36	12.8 / 1080 / 54	15.3 / 720 / 36	GT31	GT31	GT31	GT31	GT31	GT31	N/A	N/A	N/A	N/A	N/A	N/A
		38.5/35.8/17.9	37.7/35.3/17.7	69.1/63.8/31.9												
		CMTR2001	CMTR2001	CMTR3005												
6000	30	8.5 / 624 / 32	12.8 / 936 / 47	17.0 / 1248 / 42	GT31	GT31	GT31	GT31	GT31	GT31	N/A	N/A	N/A	N/A	N/A	N/A
		45.1/40.9/20.5	43.3/39.9/20.0	60.4/56.4/28.2												


- SEE SHEET 1 FOR FRAME SIZE INFORMATION.
 CELL FORMAT IS AS FOLLOWS:

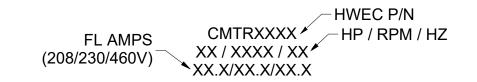
E	ADDED MAKE COLUMN TO TABLE, PUR #1817	DRO 09/18/23						H	OLLISTER-	WHI	TNEY
	UPDATED 22" WHEEL				RRECTED VARIOUS				ELEVATOR C	O. LL	С
D	5500# AND 6000# RATINGS AT 100 FPM 2:1, PUR #1808	DRO 08/18/23	С		31 2:1 30" WHEEL IOTOR/RATINGS, PUR #1801	DRO 07/27/23	TITLE	N	10TOR, 208/230/460)V, C-F	LANGE
HOLL	IIS DRAWING IS SUPPLIED AS A REPRESEN ISTER-WHITNEY ELEVATOR CO. LLC ("MAN PLY, SLIGHT ADJUSTMENTS MAY OCCUR D	UFACTURER") H	AS AGREI	ED TO	THIRD ANGLE PRO	IECTION	DRAWN BY	SCALE	MATERIAL		REFERENCE TOL.
	INSTALLATION. ANY MODIFICATIONS NOT A ANUFACTURER MAY AFFECT OPERATION, N	APPROVED IN W VOIDS ANY WAR	RITING B	Y			DRO		N/A		UNLESS OTHERWISE SPECIFIED
	RELEASES MANUFACTURER OF DOCUMENT CONTAINS CONFIDENTIAL AND CANNOT BE REPRODUCED OR DIVULGED, I	PROPRIETARY					SHEET S	IZE	DATE		CMTR
	WRITTEN AUTHORIZATION FROM TH							В	5/2/2023		SHEET 6 OF 10

		1				31 1:1 ROPIN				1		1	1	1
SPEED	(ft/min)	50	75	100	125	150	175	200	250	300	350	400	450	500
CAP (lbs)	SHEAVE SIZE (in)													
		CMTR1001	CMTR1001	CMTR1001	CMTR1505	CMTR1505	CMTR2001	CMTR2001	CMTR3005	CMTR3005	CMTR2501	CMTR4005	CMTR4005	CMTR400
2000	26	3.1 / 522 / 27	4.7 / 783 / 40	6.2 / 1044 / 53	7.7 / 1304 / 44	9.9 / 1565 / 53	10 / 913 / 46	11.5 / 1044 / 53	15.3 / 1304 / 44	18.3 / 1565 / 53	20.7 / 1217 / 61	25.1 / 1391 / 47	28.2 / 1565 / 53	31.3 / 1739
		23.4/23.2/11.6	23.4/23.2/11.6	23.4/23.2/11.6	26.9/26.2/13.1	28.6/27.6/13.8	35.6/33.5/16.8	35.3/33.4/16.7	52.6/49.7/24.9	52.6/49.7/24.9	55.8/53.8/26.9	78.2/80.2/40.1	78.2/80.2/40.1	78.2/80.2/4
		CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR2501	CMTR2501	CMTR4005	CMTR40
2000	30	3.1 / 453 / 23	4.7 / 679 / 34	6.2 / 905 / 46	7.7 / 1131 / 57	9.9 / 1357 / 46	10 / 792 / 40	11.5 / 905 / 46	15.3 / 1131 / 57	18.3 / 1357 / 46	20.7 / 1055 / 53	25.1 / 1206 / 61	28.2 / 1357 / 46	31.3 / 1507
		25.9/25.3/12.7	25.9/25.3/12.7	25.9/25.3/12.7	25.9/25.3/12.7	32.9/31.2/15.6	40.8/37.7/18.9	40.4/37.5/18.8	42.6/39.4/19.7	59.9/56.0/28.0	63.8/60.1/30.1	67.7/63.3/31.7	89.3/89.2/44.6	89.3/89.2/4
		CMTR1001	CMTR1001	CMTR1001	CMTR1505	CMTR1505	CMTR2001	CMTR2001	CMTR3005	CMTR3005	CMTR2501	CMTR4005	CMTR4005	CMTR40
2500	26	3.8 / 522 / 27	5.7 / 783 / 40	7.5 / 1044 / 53	9.4 / 1304 / 44	11.9 / 1565 / 53	12 / 913 / 46	13.8 / 1044 / 53	18.1 / 1304 / 44	21.7 / 1565 / 53	24.5 / 1217 / 61	29.5 / 1391 / 47	33.2 / 1565 / 53	36.9 / 1739
		26.9/26.1/13.1	26.9/26.1/13.1	26.9/26.1/13.1	32.3/30.7/15.4	34.2/32.4/16.2	42.1/38.9/19.5	41.7/38.7/19.4	61.5/57.4/28.7	61.5/57.4/28.7	65.6/61.6/30.8	91.0/90.6/45.3	91.0/90.6/45.3	91.0/90.6/4
		CMTR1001	CMTR1001	CMTR1001	CMTR1001	CMTR3005	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR3001	CMTR3001	CMTR5005	CMTR50
2500	30	3.8 / 453 / 23	5.7 / 679 / 34	7.5 / 905 / 46	9.4 / 1131 / 57	11.9 / 1357 / 46	12 / 792 / 40	13.8 / 905 / 46	18.1 / 1131 / 57	21.7 / 1357 / 46	24.5 / 1055 / 53	29.5 / 1206 / 61	33.2 / 1357 / 46	36.9 / 1507
		30.0/28.9/14.5	30.0/28.9/14.5	30.0/28.9/14.5	30.0/28.9/14.5	41.4/40.6/20.3	49.2/44.5/22.3	48.6/44.1/22.1	50.8/46.1/23.1	70.6/65.6/32.8	74.4/68.5/34.3	80.5/73.2/36.6	109.0/100.0/50.0	109.0/100.0
		CMTR2001	CMTR2001	CMTR2001	CMTR1505	CMTR3005	CMTR2001	CMTR2001	CMTR3005	CMTR3005	CMTR3001	CMTR5005	CMTR5005	CMTR50
3000	26	4.4 / 522 / 27	6.6 / 783 / 40	8.8 / 1044 / 53	11 / 1304 / 44	13.9 / 1565 / 53	14 / 913 / 46	16 / 1044 / 53	21 / 1304 / 44	25.2 / 1565 / 53	28.4 / 1217 / 61	33.9 / 1391 / 47	38.2 / 1565 / 53	42.4 / 1739
		29.2/28.1/14.1	28.9/27.9/14.0	28.7/27.9/14.0	38.2/35.7/17.9	41.8/40.9/20.5	49.3/44.7/22.4	48.7/44.4/22.2	70.9/65.8/32.9	70.9/65.8/32.9	77.3/70.5/35.3	108.7/99.7/49.9	108.7/99.7/49.9	108.7/99.7
		CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR2501	CMTR2501	CMTR2501	CMTR4005	CMTR5001	CMTR5001	CMTR5005	CMTR50
3000	30	4.4 / 453 / 23	6.6 / 679 / 34	8.8 / 905 / 46	11 / 1131 / 57	13.9 / 1357 / 46	14 / 792 / 40	16 / 905 / 46	21 / 1131 / 57	25.2 / 1357 / 46	28.4 / 1055 / 53	33.9 / 1206 / 61	38.2 / 1357 / 46	42.4 / 1507
		33.4/31.3/15.7	32.5/30.8/15.4	32.2/30.7/15.4	32.1/30.7/15.4	46.9/45.0/22.5	58.0/55.5/27.8	58.0/55.5/27.8	60.6/57.6/28.8	80.3/81.9/41.0	83.7/78.2/39.1	89.6/82.9/41.5	125.4/114.0/57.0	125.4/114.0
		CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR3005	CMTR2501	CMTR2501	CMTR4005	CMTR4005	CMTR5001	CMTR5005	CMTR5005	CMTR50
3500	26	5.1 / 522 / 27	7.6 / 783 / 40	10.2 / 1044 / 53	12.7 / 1304 / 44	15.9 / 1565 / 53	16 / 913 / 46	18.3 / 1044 / 53	23.8 / 1304 / 44	28.6 / 1565 / 53	32.3 / 1217 / 61	38.3 / 1391 / 47	43.1 / 1565 / 53	47.9 / 1739
0000	20	33.1/31.2/15.6	32.3/30.7/15.4	32.0/30.6/15.3	44.9/43.4/21.7	46.5/44.7/22.4	57.5/55.1/27.6	57.5/55.1/27.6	79.1/81.0/40.5	79.1/81.0/40.5	85.3/79.3/39.7	122.9/111.8/55.9	122.9/111.8/55.9	122.9/111.8
		CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR2501	CMTR2501	CMTR3001	CMTR4005	CMTR5001	CMTR5001	CMTR6005	CMTR6
3500	30	5.1 / 453 / 23	7.6 / 679 / 34	10.2 / 905 / 46	12.7 / 1131 / 57	15.9 / 1357 / 46	16 / 792 / 40	18.3 / 905 / 46	23.8 / 1131 / 57	28.6 / 1357 / 46	32.3 / 1055 / 53	38.3 / 1206 / 61	43.1 / 1357 / 46	47.9 / 1507
3300		38.6/35.3/17.7	36.8/34.4/17.2	36.2/34.0/17.0	35.9/33.9/17.0	52.6/49.7/24.9	65.9/61.9/30.9	65.9/61.9/30.9	67.4/62.9/31.5	90.5/90.2/45.1	94.3/87.1/43.6	100.8/92.3/46.2	138.6/126.3/63.2	138.6/126.3
		CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR3005	CMTR2501	CMTR2501	CMTR4005	CMTR4005	CMTR5001	CMTR6005	CMTR6005	130.0/120.3
4000	26	5.8 / 522 / 27	8.6 / 783 / 40	11.5 / 1044 / 53	14.3 / 1304 / 44	17.9 / 1565 / 53	18 / 913 / 46	20.6 / 1044 / 53	26.7 / 1304 / 44	32 / 1565 / 53	36.1 / 1217 / 61	42.8 / 1391 / 47	48.1 / 1565 / 53	N/A
4000	20													IN/A
		36.7/34.0/17.0	35.9/33.7/16.9	35.3/33.4/16.7	49.8/47.4/23.7	51.4/48.7/24.4	64.3/60.6/30.3	64.3/60.6/30.3	88.0/88.1/44.1	88.0/88.1/44.1	95.1/87.5/43.8	134.0/122.7/61.4	134.0/122.7/61.4	
1000	20	CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR3001	CMTR3001	CMTR3001	CMTR5005	CMTR5001	CMTR5001	N1/A	NI/A
4000	30	5.8 / 453 / 23	8.6 / 679 / 34	11.5 / 905 / 46	14.3 / 1131 / 57	17.9 / 1357 / 46	18 / 792 / 40	20.6 / 905 / 46	26.7 / 1131 / 57	32 / 1357 / 46	36.1 / 1055 / 53	42.8 / 1206 / 61	N/A	N/A
		43.5/39.1/19.6	41.5/38.1/19.1	40.4/37.5/18.8	40.2/37.4/18.7	58.5/54.8/27.4	74.0/67.8/33.9	73.5/67.6/33.8	75.1/69.2/34.6	105.2/96.8/48.4	105.4/96.4/48.2	112.7/102.1/51.1		
4500		CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR3005	CMTR3001	CMTR3001	CMTR4005	CMTR4005	CMTR5001	CMTR6005		
4500	26	6.4 / 522 / 27	9.6 / 783 / 40	12.8 / 1044 / 53	16 / 1304 / 44	19.8 / 1565 / 53	20 / 913 / 46	22.9 / 1044 / 53	29.5 / 1304 / 44	35.4 / 1565 / 53	40 / 1217 / 61	47.2 / 1391 / 47	N/A	N/A
		41.3/37.6/18.8	39.8/36.8/18.4	39.2/36.5/18.3	54.8/51.6/25.8	56.5/53.1/26.6	70.7/65.4/32.7	70.0/64.9/32.5	97.0/95.5/47.8	97.0/95.5/47.8	105.2/96.0/48.0	148.2/133.6/66.8		
		CMTR2001	CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR3001	CMTR3001	CMTR5001	CMTR5005	CMTR5001	CMTR5001		
4500	30	6.4 / 453 / 23	9.6 / 679 / 34	12.8 / 905 / 46	16 / 1131 / 57	19.8 / 1357 / 46	20 / 792 / 40	22.9 / 905 / 46	29.5 / 1131 / 57	35.4 / 1357 / 46	40 / 1055 / 53	47.2 / 1206 / 61	N/A	N/A
		50.0/44.0/22.0	46.6/42.1/21.1	45.3/41.5/20.8	44.8/41.2/20.6	64.6/60.2/30.1	81.9/72.0/36.0	81.7/71.9/35.8	81.5/76.4/38.2	116.5/106.3/53.2	117.3/106.1/53.1	125.2/112.3/56.2		

- SEE SHEET 1 FOR FRAME SIZE INFORMATION.
 CELL FORMAT IS AS FOLLOWS:

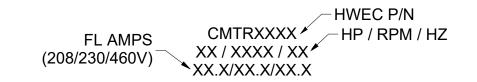
E	Ξ	ADDED MAKE COLUMN TO TABLE, PUR #1817	DRO 09/18/23						HC	DLLISTER-V	WHI	TNEY
		UPDATED 22" WHEEL				RRECTED VARIOUS				ELEVATOR C	O. LL	C
	ר	5500# AND 6000#	DRO	С	1	[31 2:1 30" WHEEL		TITLE				
		RATINGS AT 100 FPM	08/18/23	U	M		07/27/23		М	OTOR, 208/230/460)V C-F	
		2:1, PUR #1808				PUR #1801			141		, 0 1	
	IOLLIS	S DRAWING IS SUPPLIED AS A REPRESEN STER-WHITNEY ELEVATOR CO. LLC ("MANI	JFACTURER") H	AS AGRE	ED TO	THIRD ANGLE PRO	IECTION	DRAWN BY	SCALE	MATERIAL		REFERENCE TOL.
S		LY. SLIGHT ADJUSTMENTS MAY OCCUR D ISTALLATION. ANY MODIFICATIONS NOT A								N/A		ALL DIMENSIONS REFERENCE UNLESS OTHERWISE
	MA	NUFACTURER MAY AFFECT OPERATION, \ RELEASES MANUFACTURER OF		RANTY A	ND			DRO		-		SPECIFIED
		OCUMENT CONTAINS CONFIDENTIAL AND	PROPRIETARY					SHEET S	IZE	DATE		CMTR
1H/	IAIC	ANNOT BE REPRODUCED OR DIVULGED, II WRITTEN AUTHORIZATION FROM THI			THOUT				В	5/2/2023		SHEET 7 OF 10

					GT	31 1:1 ROPIN	G DUTY TAB	LES						
SPEED	(ft/min)	50	75	100	125	150	175	200	250	300	350	400	450	500
CAP (lbs)	SHEAVE SIZE (in)													
		CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR3005	CMTR3001	CMTR3001	CMTR5005	CMTR5005	CMTR5001			
5000	26	7.1 / 522 / 27	10.6 / 783 / 40	14.1 / 1044 / 53	17.7 / 1304 / 44	21.8 / 1565 / 53	22 / 913 / 46	25.2 / 1044 / 53	32.4 / 1304 / 44	38.9 / 1565 / 53	43.9 / 1217 / 61	N/A	N/A	N/A
		45.5/40.9/20.5	43.9/40.1/20.1	42.9/39.6/19.8	60.0/56.1/28.1	61.8/57.6/28.8	77.9/71.2/35.6	77.0/70.6/35.3	110.7/101.4/50.7	110.7/101.4/50.7	115.8/104.5/52.3			
		CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR3005	CMTR5001	CMTR5001	CMTR5005	CMTR5005				
5500	26	7.8 / 522 / 27	11.6 / 783 / 40	15.5 / 1044 / 53	19.3 / 1304 / 44	23.8 / 1565 / 53	24 / 913 / 46	27.5 / 1044 / 53	35.3 / 1304 / 44	42.3 / 1565 / 53	N/A	N/A	N/A	N/A
		50.8/45.0/22.5	48.2/43.6/21.8	46.9/42.8/21.4	65.3/60.8/30.4	67.1/62.4/31.2	82.4/77.0/38.5	82.0/76.8/38.4	120.5/109.7/54.9	120.5/109.7/54.9				
		CMTR2001	CMTR2001	CMTR2001	CMTR3005	CMTR3005	CMTR5001	CMTR5001	CMTR6005					
6000	26	8.4 / 522 / 27	12.6 / 783 / 40	16.8 / 1044 / 53	21 / 1304 / 44	25.8 / 1565 / 53	26 / 913 / 46	29.7 / 1044 / 53	38.1 / 1304 / 44	N/A	N/A	N/A	N/A	N/A
		56.8/47.2/23.9	52.3/46.9/23.5	51.0/46.2/23.1	70.8/65.7/32.9	72.6/67.4/33.7	88.7/82.3/41.2	88.2/82.0/41.0	127.4/117.6/58.8					


- SEE SHEET 1 FOR FRAME SIZE INFORMATION.
 CELL FORMAT IS AS FOLLOWS:

E	ADDED MAKE COLUMN TO TABLE, PUR #1817	DRO 09/18/23						HC	OLLISTER-V	WHI	TNEY
	UPDATED 22" WHEEL				RRECTED VARIOUS				ELEVATOR C	O. LL	С
D	5500# AND 6000# RATINGS AT 100 FPM 2:1, PUR #1808	DRO 08/18/23	С		31 2:1 30" WHEEL IOTOR/RATINGS, <u>PUR #1801</u>	DRO 07/27/23	TITLE	М	OTOR, 208/230/460)V, C-F	LANGE
HOL		UFACTURER") H.	AS AGREE	ED TO AND	THIRD ANGLE PRO	JECTION	BY	SCALE	MATERIAL		REFERENCE TOL. ALL DIMENSIONS REFERENCE UNLESS OTHERWISE
ТНІ	PLY. SLIGHT ADJUSTMENTS MAY OCCUR DURING MANUFACTURING ANI NSTALLATION. ANY MODIFICATIONS NOT APPROVED IN WRITING BY NUFACTURER MAY AFFECT OPERATION, VOIDS ANY WARRANTY AND RELEASES MANUFACTURER OF ALL LIABILITY. DOCUMENT CONTAINS CONFIDENTIAL AND PROPRIETARY INFORMATIO JANNOT BE REPRODUCED OR DIVULGED, IN WHOLE OR IN PART, WITHO			TION			DRO SHEET S		DATE		SPECIFIED
	WRITTEN AUTHORIZATION FROM TH							В	5/2/2023		SHEET 8 OF 10

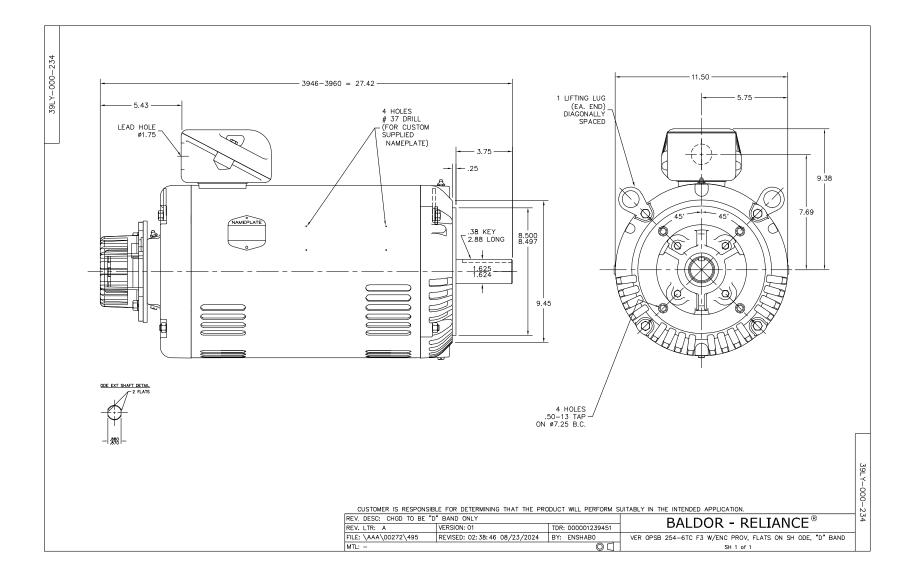
		GT31 2:1 ROPIN	G DUTY TAB	LES						
SPEED	(ft/min)	50	75	100	125	150	175	200	225	250
CAP (lbs)	SHEAVE SIZE (in)									
		CMTR1001	CMTR1505	CMTR1001	CMTR1505	CMTR1505	CMTR2001	CMTR3005	CMTR3005	CMTR3005
2500	26	3.9 / 1044 / 53	5.9 / 1565 / 53	6.8 / 1044 / 53	8.5 / 1304 / 44	10.7 / 1565 / 53	12.1 / 1217 / 61	13.8 / 1391 / 47	16.4 / 1565 / 53	18.3 / 1739 / 58
		18.0/18.8/9.4	19.0/19.4/9.7	24.9/24.4/12.2	29.2/28.1/14.1	30.8/29.5/14.8	33.1/31.4/15.7	45.7/44.0/22.0	47.8/45.8/22.9	47.8/45.8/22.9
		CMTR1001	CMTR1505	CMTR1001	CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR3005	CMTR3005
2500	30	3.9 / 905 / 46	5.9 / 1357 / 46	6.8 / 905 / 46	8.5 / 1131 / 57	10.7 / 1357 / 46	12.1 / 1055 / 53	13.8 / 1206 / 61	16.4 / 1357 / 46	18.3 / 1507 / 51
		19.3/19.9/9.9	20.9/21.0/10.5	27.6/26.8/13.4	27.6/26.8/13.4	35.6/33.5/16.8	36.9/34.7/17.4	37.5/35.0/17.5	54.2/51.1/25.6	54.2/51.1/25.6
		CMTR1001	CMTR1505	CMTR1001	CMTR1505	CMTR1505	CMTR2001	CMTR3005	CMTR3005	CMTR3005
3000	26	4.6 / 1044 / 53	6.9 / 1565 / 53	8.0 / 1044 / 53	10.0 / 1304 / 44	12.5 / 1565 / 53	14.1 / 1217 / 61	16.1 / 1391 / 47	19.0 / 1565 / 53	21.1 / 1739 / 58
		19.5/20.0/10.0	21.2/21.3/10.7	28.1/27.2/13.6	34.2/32.4/16.2	36.0/33.9/17.0	37.9/35.3/17.7	52.2/49.4/24.7	54.4/51.2/25.6	54.4/51.2/25.6
		CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR3005	CMTR2001	CMTR2001	CMTR3005	CMTR3005
3000	30	4.6 / 905 / 46	6.9 / 1357 / 46	8.0 / 905 / 46	10.0 / 1131 / 57	12.5 / 1357 / 46	14.1 / 1055 / 53	16.1 / 1206 / 61	19.0 / 1357 / 46	21.1 / 1507 / 51
		21.2/21.4/10.7	23.6/23.4/11.7	29.5/28.6/14.3	29.6/28.6/14.3	43.1/41.9/21.0	42.5/39.3/19.7	43.3/39.9/20.0	62.1/57.9/29.0	62.1/57.9/29.0
		CMTR1001	CMTR1505	CMTR2001	CMTR3005	CMTR3005	CMTR2001	CMTR3005	CMTR3005	CMTR3005
3500	26	5.3 / 1044 / 53	8.0 / 1565 / 53	9.2 / 1044 / 53	11.4 / 1304 / 44	14.3 / 1565 / 53	16.1 / 1217 / 61	18.4 / 1391 / 47	21.6 / 1565 / 53	24.0 / 1739 / 58
		21.2/21.3/10.7	23.6/23.3/11.7	29.5/28.5/14.3	41.3/40.5/20.3	42.7/41.6/20.8	43.0/39.5/19.8	58.9/55.1/27.6	61.2/57.1/28.6	61.2/57.1/28.6
		CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR3005	CMTR2001	CMTR2001	CMTR3005	CMTR3005
3500	30	5.3 / 905 / 46	8.0 / 1357 / 46	9.2 / 905 / 46	11.4 / 1131 / 57	14.3 / 1357 / 46	16.1 / 1055 / 53	18.4 / 1206 / 61	21.6 / 1357 / 46	24.0 / 1507 / 51
		23.2/23.0/11.5	26.6/25.9/13.0	33.1/31.4/15.7	33.0/31.5/15.8	48.0/45.9/23.0	48.5/44.2/22.1	49.7/45.0/22.5	70.2/65.2/32.6	70.2/65.2/32.6
		CMTR1001	CMTR1505	CMTR2001	CMTR3005	CMTR3005	CMTR2001	CMTR3005	CMTR3005	CMTR3005
4000	26	6.0 / 1044 / 53	9.0 / 1565 / 53	10.4 / 1044 / 53	12.9 / 1304 / 44	16.1 / 1565 / 53	18.2 / 1217 / 61	20.7 / 1391 / 47	24.2 / 1565 / 53	26.9 / 1739 / 58
		22.9/22.7/11.4	26.1/25.5/12.8	32.5/31.0/15.5	45.6/43.9/22.0	47.0/45.1/22.6	48.4/44.0/22.0	65.8/61.2/30.6	68.2/63.4/31.7	68.2/63.4/31.7
		CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR3005	CMTR2501	CMTR2501	CMTR4005	CMTR4005
4000	30	6.0 / 905 / 46	9.0 / 1357 / 46	10.4 / 905 / 46	12.9 / 1131 / 57	16.1 / 1357 / 46	18.2 / 1055 / 53	20.7 / 1206 / 61	24.2 / 1357 / 46	26.9 / 1507 / 51
		25.2/24.7/12.4	29.8/28.6/14.3	36.8/34.5/17.3	36.7/34.5/17.3	53.2/50.2/25.1	56.5/54.3/27.2	56.5/54.3/27.2	77.4/79.6/39.8	77.4/79.6/39.8
		CMTR1001	CMTR1505	CMTR2001	CMTR3005	CMTR3005	CMTR2001	CMTR3005	CMTR4005	CMTR4005
4500	26	6.7 / 1044 / 53	10.0 / 1565 / 53	11.5 / 1044 / 53	14.4 / 1304 / 44	17.9 / 1565 / 53	20.2 / 1217 / 61	23.0 / 1391 / 47	26.8 / 1565 / 53	29.8 / 1739 / 58
		24.6/24.2/12.1	28.8/27.8/13.9	35.6/33.6/16.8	50.0/47.5/23.8	51.5/48.8/24.4	54.1/48.6/24.3	73.0/67.7/33.9	74.6/77.4/38.7	74.6/77.4/38.7
		CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR3005	CMTR2501	CMTR2501	CMTR4005	CMTR4005
4500	30	6.7 / 905 / 46	10.0 / 1357 / 46	11.5 / 905 / 46	14.4 / 1131 / 57	17.9 / 1357 / 46	20.2 / 1055 / 53	23.0 / 1206 / 61	26.8 / 1357 / 46	29.8 / 1507 / 51
		27.4/26.6/13.3	33.1/31.4/15.7	40.8/37.8/18.9	40.5/37.7/18.9	58.6/54.8/27.4	62.3/59.0/29.5	62.3/59.0/29.5	85.1/85.8/42.9	85.1/85.8/42.9
		CMTR1001	CMTR1505	CMTR2001	CMTR3005	CMTR3005	CMTR2501	CMTR4005	CMTR4005	CMTR4005
5000	26	7.4 / 1044 / 53	11.0 / 1565 / 53	12.7 / 1044 / 53	15.9 / 1304 / 44	19.7 / 1565 / 53	22.2 / 1217 / 61	25.3 / 1391 / 47	29.4 / 1565 / 53	32.6 / 1739 / 58
		26.5/25.8/12.9	31.7/30.2/15.1	38.9/36.3/18.2	54.5/51.3/25.7	56.1/52.7/26.4	59.6/56.8/28.4	78.9/80.8/40.4	81.1/82.6/41.3	81.1/82.6/41.3
		CMTR1001	CMTR1505	CMTR2001	CMTR2001	CMTR3005	CMTR3001	CMTR3001	CMTR4005	CMTR4005
5000	30	7.4 / 905 / 46	11.0 / 1357 / 46	12.7 / 905 / 46	15.9 / 1131 / 57	19.7 / 1357 / 46	22.2 / 1055 / 53	25.3 / 1206 / 61	29.4 / 1357 / 46	32.6 / 1507 / 51
		29.5/28.5/14.3	36.6/34.4/17.2	45.0/41.2/20.6	44.5/41.0/20.5	64.1/59.7/29.9	67.1/62.5/31.3	68.6/63.5/31.8	92.8/92.1/46.1	92.8/92.1/46.1


- SEE SHEET 1 FOR FRAME SIZE INFORMATION.
 CELL FORMAT IS AS FOLLOWS:

E	Ξ	ADDED MAKE COLUMN TO TABLE, PUR #1817	DRO 09/18/23						HC	OLLISTER-V	WHI	TNEY
		UPDATED 22" WHEEL				RRECTED VARIOUS				ELEVATOR C	O. LL	C
	5	5500# AND 6000#	DRO	С		T31 2:1 30" WHEEL		TITLE				
		RATINGS AT 100 FPM 2:1, PUR #1808	08/18/23	Ū	M	IOTOR/RATINGS, PUR #1801	07/27/23		Μ	IOTOR, 208/230/460)V, C-F	LANGE
	OLLI	S DRAWING IS SUPPLIED AS A REPRESEN STER-WHITNEY ELEVATOR CO. LLC ("MANU LY. SLIGHT ADJUSTMENTS MAY OCCUR D	JFACTURER") H	AS AGRE	ED TO	THIRD ANGLE PROJ	ECTION	DRAWN BY	SCALE	MATERIAL		REFERENCE TOL.
	١N	ISTALLATION. ANY MODIFICATIONS NOT A NUFACTURER MAY AFFECT OPERATION, V RELEASES MANUFACTURER OF	APPROVED IN W /OIDS ANY WAR	RITING B	Y			DRO		N/A		UNLESS OTHERWISE SPECIFIED
		DOCUMENT CONTAINS CONFIDENTIAL AND ANNOT BE REPRODUCED OR DIVULGED, II	PROPRIETARY					SHEET S	IZE	DATE		CMTR
	A 0	WRITTEN AUTHORIZATION FROM TH			111001				В	5/2/2023		SHEET 9 OF 10

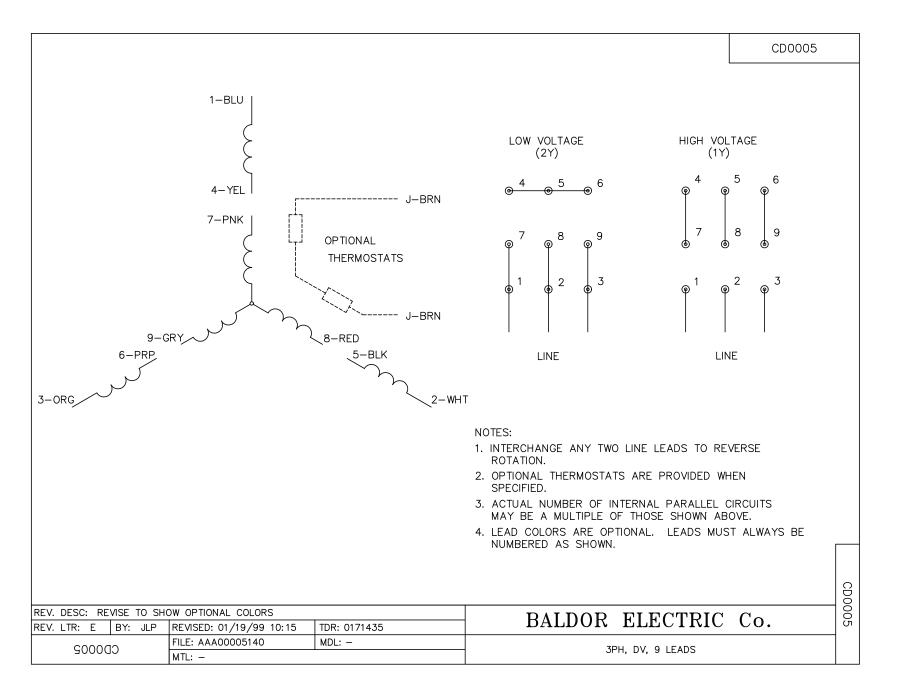
		GT31 2:1 ROPIN	G DUTY TAB	LES						
SPEED	(ft/min)	50	75	100	125	150	175	200	225	250
CAP (lbs)	SHEAVE SIZE (in)									
		CMTR1001	CMTR1505	CMTR2001	CMTR3005	CMTR3005	CMTR2501	CMTR4005	CMTR4005	CMTR4005
5500	26	8.1 / 1044 / 53	12.1 / 1565 / 53	13.9 / 1044 / 53	17.4 / 1304 / 44	21.4 / 1565 / 53	24.2 / 1217 / 61	27.6 / 1391 / 47	32.0 / 1565 / 53	35.5 / 1739 / 5
		28.3/27.4/13.7	34.6/32.7/16.4	42.3/39.1/19.6	59.2/55.4/27.7	60.7/56.7/28.4	64.7/60.9/30.5	85.6/86.2/43.1	87.8/88.0/44.0	87.8/88.0/44.
		CMTR2001	CMTR3005	CMTR2001	CMTR2001	CMTR3005	CMTR3001	CMTR3001	CMTR5005	CMTR5005
5500	30	8.1 / 905 / 46	12.1 / 1357 / 46	13.9 / 905 / 46	17.4 / 1131 / 57	21.4 / 1357 / 46	24.2 / 1055 / 53	27.6 / 1206 / 61	32.0 / 1357 / 46	35.5 / 1507 /
		29.8/28.8/14.4	41.8/40.9/20.5	49.4/44.7/22.4	48.4/44.2/22.1	69.7/64.7/32.4	73.0/67.3/33.7	74.9/68.5/34.3	105.0/96.7/48.4	105.0/96.7/4
		CMTR1001	CMTR1505	CMTR2001	CMTR3005	CMTR3005	CMTR3001	CMTR4005	CMTR4005	CMTR400
6000	26	8.8 / 1044 / 53	13.1 / 1565 / 53	15.1 / 1044 / 53	18.9 / 1304 / 44	23.2 / 1565 / 53	26.2 / 1217 / 61	29.9 / 1391 / 47	34.5 / 1565 / 53	38.4 / 1739 /
		30.2/29.1/14.6	37.7/35.3/17.7	45.9/42.1/21.1	63.9/59.6/29.8	65.5/61.0/30.5	70.5/65.0/32.5	92.3/91.7/45.9	94.6/93.6/46.8	94.6/93.6/46
		CMTR2001	CMTR3005	CMTR2001	CMTR2001	CMTR4005	CMTR3001	CMTR3001	CMTR5005	CMTR500
6000	30	8.8 / 905 / 46	13.1 / 1357 / 46	15.1 / 905 / 46	18.9 / 1131 / 57	23.2 / 1357 / 46	26.2 / 1055 / 53	29.9 / 1206 / 61	34.5 / 1357 / 46	38.4 / 1507 /
		31.9/30.5/15.3	44.6/43.1/21.6	54.1/48.5/24.3	52.8/47.8/23.9	74.6/77.4/38.7	79.7/72.8/36.4	81.4/73.8/36.9	113.5/103.8/51.9	113.5/103.8/
		CMTR2001	CMTR3005	CMTR2001	CMTR3005	CMTR4005	CMTR3001	CMTR5005	CMTR5005	CMTR50
7000	26	10.1 / 1044 / 53	15.2 / 1565 / 53	17.5 / 1044 / 53	21.8 / 1304 / 44	26.8 / 1565 / 53	30.2 / 1217 / 61	34.5 / 1391 / 47	39.7 / 1565 / 53	44.1 / 1739
		32.0/30.6/15.3	44.8/43.2/21.6	53.3/48.0/24.0	73.8/68.4/34.2	74.6/77.4/38.7	81.6/74.0/37.0	110.7/101.4/50.7	113.1/103.4/51.7	113.1/103.4
		CMTR2001	CMTR3005	CMTR2501	CMTR2501	CMTR4005	CMTR5001	CMTR5001	CMTR6005	CMTR600
7000	30	10.1 / 905 / 46	15.2 / 1357 / 46	17.5 / 905 / 46	21.8 / 1131 / 57	26.8 / 1357 / 46	30.2 / 1055 / 53	34.5 / 1206 / 61	39.7 / 1357 / 46	44.1 / 1507
		36.2/34.0/17.0	50.5/47.9/24.0	62.9/59.5/29.8	62.9/59.5/29.8	85.1/85.8/42.9	93.0/83.4/41.7	90.7/83.8/41.9	127.6/117.8/58.9	127.6/117.8
		CMTR2001	CMTR3005	CMTR2501	CMTR4005	CMTR4005	CMTR5001	CMTR5005		
8000	26	11.5 / 1044 / 53	17.2 / 1565 / 53	19.9 / 1044 / 53	24.8 / 1304 / 44	30.4 / 1565 / 53	34.3 / 1217 / 61	39.2 / 1391 / 47	N/A	N/A
		35.6/33.6/16.8	49.8/47.4/23.7	62.0/58.8/29.4	82.2/83.4/41.7	83.7/84.6/42.3	89.2/82.5/41.3	125.5/114.0/57.0		
		CMTR2001	CMTR3005	CMTR3001	CMTR3001	CMTR4005	CMTR5001	CMTR5001		
8000	30	11.5 / 905 / 46	17.2 / 1357 / 46	19.9 / 905 / 46	24.8 / 1131 / 57	30.4 / 1357 / 46	34.3 / 1055 / 53	39.2 / 1206 / 61	N/A	N/A
		40.8/37.8/18.9	56.6/53.1/26.6	70.5/65.1/32.6	69.9/64.9/32.5	95.9/94.6/47.3	100.0/91.8/45.9	102.4/93.7/46.9		
		CMTR2001	CMTR3005	CMTR3001	CMTR4005	CMTR4005	CMTR5001	CMTR6005		
9000	26	12.9 / 1044 / 53	19.3 / 1565 / 53	22.2 / 1044 / 53	27.8 / 1304 / 44	33.9 / 1565 / 53	38.3 / 1217 / 61	43.8 / 1391 / 47	N/A	N/A
		39.2/36.5/18.3	55.1/51.8/25.9	68.2/63.5/31.8	91.4/90.9/45.5	93.0/92.2/46.1	99.2/90.9/45.5	137.1/125.1/62.6		
		CMTR2001	CMTR3005	CMTR3001	CMTR3001	CMTR5005	CMTR5001	CMTR5001		
9000	30	12.9 / 905 / 46	19.3 / 1357 / 46	22.2 / 905 / 46	27.8 / 1131 / 57	33.9 / 1357 / 46	38.3 / 1055 / 53	43.8 / 1206 / 61	N/A	N/A
		45.3/41.5/20.8	62.9/58.6/29.3	79.4/72.4/36.2	78.1/71.5/35.8	111.5/102.1/51.0	111.8/101.6/50.8	114.9/103.9/52.0		
		CMTR2001	CMTR3005	CMTR3001	CMTR5005	CMTR5005				
10000	26	14.2 / 1044 / 53	21.3 / 1565 / 53	24.6 / 1044 / 53	30.8 / 1304 / 44	37.5 / 1565 / 53	N/A	N/A	N/A	N/A
		43.2/39.9/20.0	60.5/56.5/28.3	75.5/69.4/34.7	105.1/96.7/48.4	106.8/98.1/49.1				
		CMTR2001	CMTR3005	CMTR5001	CMTR5005	CMTR6005				
12000	26	17.0 / 1044 / 53	25.5 / 1565 / 53	29.4 / 1044 / 53	36.7 / 1304 / 44	44.6 / 1565 / 53	N/A	N/A	N/A	N/A
		51.6/46.7/23.4	71.7/66.6/33.3	87.1/81.1/40.6	125.5/114.0/57.0	124.4/115.2/57.6				

- SEE SHEET 1 FOR FRAME SIZE INFORMATION.
 CELL FORMAT IS AS FOLLOWS:



	Е	ADDED MAKE COLUMN TO TABLE, PUR #1817	DRO 09/18/23						HC	DLLISTER-V	WHI	TNEY
		UPDATED 22" WHEEL				RRECTED VARIOUS				ELEVATOR C	O. LL	С
	D	5500# AND 6000#	DRO	C	1	31 2:1 30" WHEEL		TITLE				
		RATINGS AT 100 FPM	08/18/23	U	M	IOTOR/RATINGS,	07/27/23		М	OTOR, 208/230/460	V C-F	
L		2:1, PUR #1808				PUR #1801				01010,200,200,400	, 0 1	E/ INGE
		S DRAWING IS SUPPLIED AS A REPRESEN STER-WHITNEY ELEVATOR CO. LLC ("MANU				THIRD ANGLE PRO	IECTION	1	SCALE N	IATERIAL		REFERENCE TOL.
		LY. SLIGHT ADJUSTMENTS MAY OCCUR D						BY		N/A		ALL DIMENSIONS REFERENCE UNLESS OTHERWISE
		NUFACTURER MAY AFFECT OPERATION, V	OIDS ANY WAR					DRO				SPECIFIED
		RELEASES MANUFACTURER OF A OCUMENT CONTAINS CONFIDENTIAL AND	PROPRIETARY			$+ \rightarrow (\oplus)$		SHEET S	IZE	DATE		CMTR
	THAT C	ANNOT BE REPRODUCED OR DIVULGED, IN WRITTEN AUTHORIZATION FROM THE			ITHOUT				В	5/2/2023		SHEET 10 OF 10

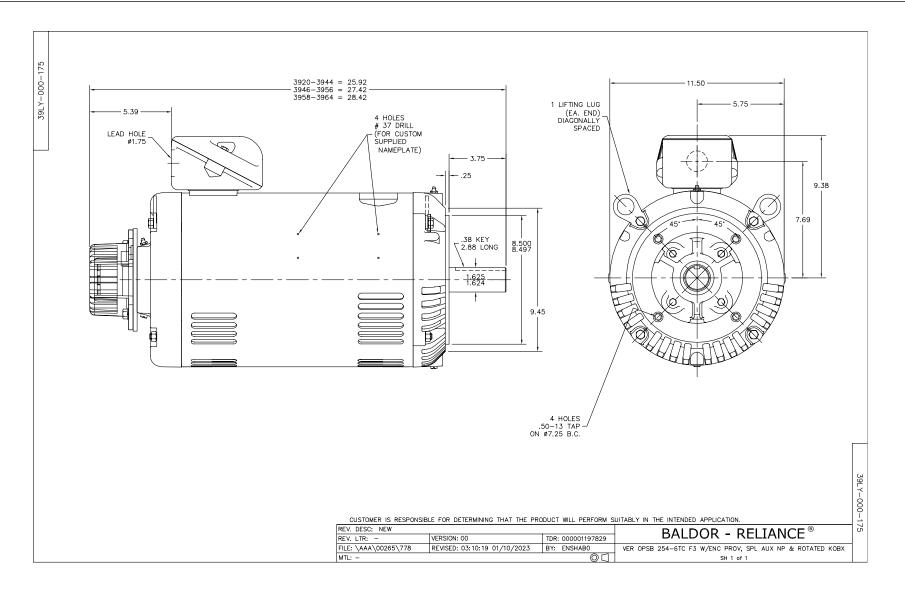
Nameplate

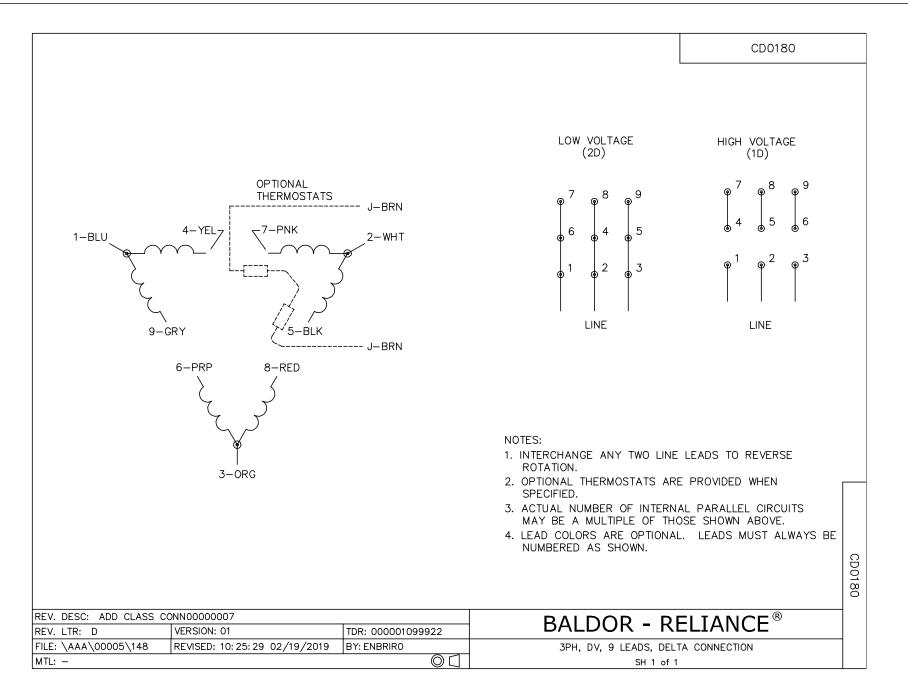

			NP43	389L						
CAT.NO.	CMTR1	001								
SPEC.	39-000	00-073	L							
FRAME	256TC			ŀ	I.P.	10				
VOLTS	230/46	50								
MAG. CUR.	13.4/6	.7				F.L. A	MPS		27,	/13.5
R.P.M.	1175			F	.P.M	MAX	18	00		
HZ.	60		PH.	Э	;	CLA	SS	F		
SER.F.	1.00		DE	S.	А	S	LHZ		1	
NEMA NOM. EFF.	91.7		W	K 2	4.34					
BLOWER		v				РН		ΗZ		AMPS
RATING	40C AN	1B-CON	IT							
DE	6309	0	DE	631	1					
СС	010A	SN								
	1.15SF	ON SIN	IEWAVI	E 5:1	СТ					

Page 4 of 11

Page 9 of 11

Page 189




Page 10 of 11

BALDOR • RELIANCE Product Information Order: 39-0000-0574 - Sales Order #: 1210248314-20 - PRELIMINARY DATA

Notes:	Class null
	Division null

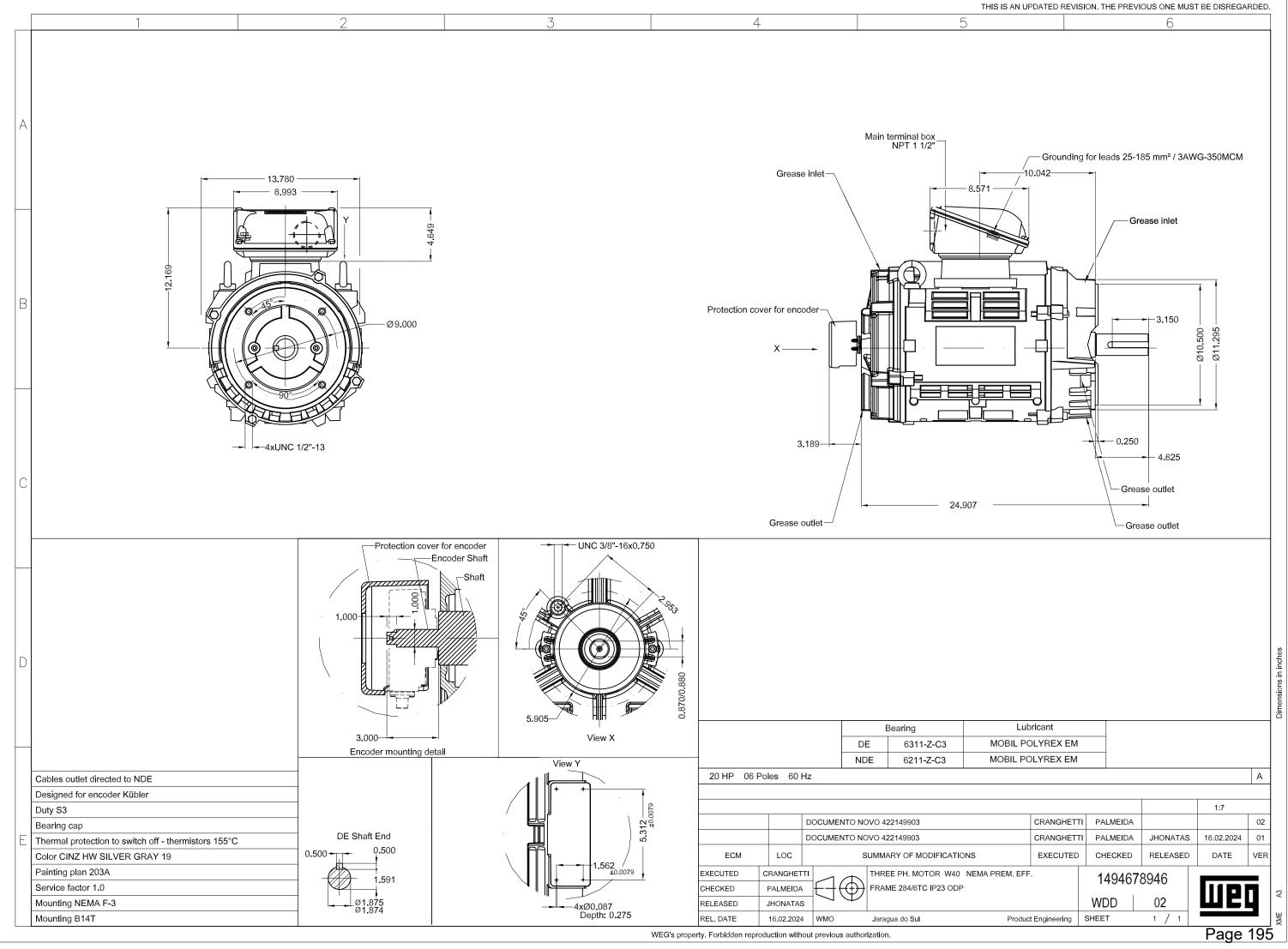
Nameplate NP4389L							
	CMTR1505						
	39-0000-0574						
FRAME	2541C 230/460 USABLE@208V:39A						
MAG. CUR.				F.L. AMPS 36.4/18	.2		
R.P.M.	1770		R.P.M. MA	X 2700			
HZ.		PH. 3					
SER.F. NEMA NOM. EFF.		DES. A WK2 2.	1	<u>SL HZ 1</u>			
BLOWER			PH	нг		AMPS	
RATING	40C AMB-CONT	-					
	6309	ODE 6311				7	
	010A SN 1.15SF ON SINEWAVE 5:1 CT						

DATA SHEET

Three Phase Induction Motor - Squirrel Cage

:

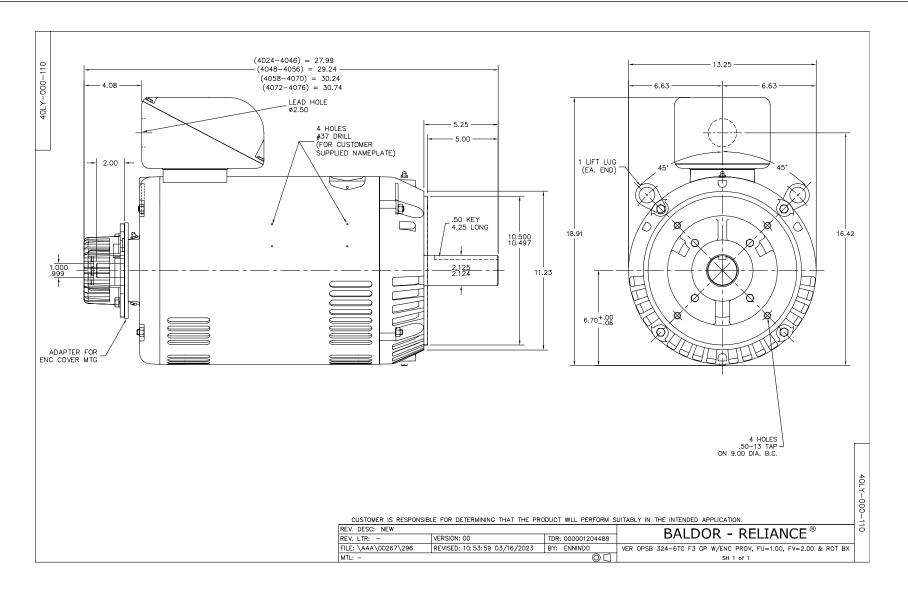
Customer

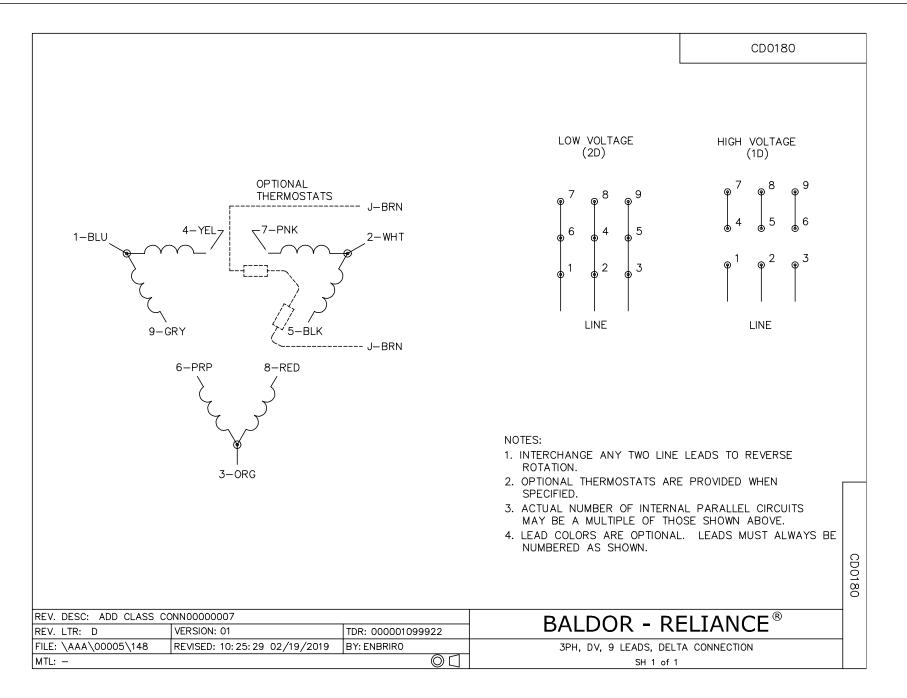

Product line

: W40 NEMA Premium Efficiency

	Rev.		Sur		on angoe					Date
	_		~	nmarvo	of changes			Performed	Checked	Date
(3) Ar	pproximate weight subject the rated point.	ect to cha								1
	easured at 1m and with						MG 1-12.			
	hen viewed from the d							ply, subject to th	ne tolerances stipula	ated in NEMA
This r	evision replaces and c	ancels the	e previous or	ie, which i	must be elim	inated.	These are	average values	based on tests with	n sinusoidal
Ste	Noise	: MG	61 - Part 9							
Standards	Tests	-	61 - Part 1	-					MG1 - Part 12	
s	Specification	· MC	61 - Part 1	0			Vib	oration : N	MG1 - Part 7	
Qua	ntity of starts per h	10ur: 18	2							
	ator Duty Motor									
Note							,			
	icant type			-		-				
	ricant amount		18		11					
	rication interval		2000		2000					
Bear	ring type		<u>Drive</u> 6311-Z		<u>1000 ariv</u> 6211-2					
			Drive	and	Non driv					I
	_ op 10 00 112 (00			,			Rise time		>= 0	•
•	Iz up to 60 Hz (Co		orque): 88	3,2 ft.lb			dV/dt	pear vollage pri	-	500 V 500 V/µs
-	ration limits with ir	-	0,47	0,71	0,60	0,64		· · · · · ·	ase-to-phase <= 2	
	er factor	- 0,54	88,4 0,47	91,7 0,71	92,4 0,80	92,4 0,84	-	e a (J=GD²/4)	: 6,8864 sq.ft.l	h
Outp Effic	iency (%)	Start	25% 88,4	50% 91,7	75% 92,4	100% 92,4	Load type Load torqu	0	: Constant toro : 88,2 ft.lb	lue
	nent of inertia (J)		6,89 sq.ft.		750/	1000/	Load type		· Constant tor	1110
	vice factor		1,00	lh						
	lation class	:								
	akdown torque		260 % F							
	up torque		195 %							
	ked rotor torque		230 %				Design		: B	
	ed torque		89,4 ft.lb				Approx. we	eight ³	: 410 lb	
Slip			2,08 %				Starting me		: VFD	
Rate	ed speed	:	1175 rpm				Noise leve	2	: 59,0 dB(A)	
No lo	oad current	:	18,0/9,00	A			Direct of ro	otation ¹	: Both	
LRC	(p.u.)	:	6,4 Code	G			Mounting		: F-3	
L. R	. Amperes		311/155 A				Cooling me	-	: IC01 - ODP	
	ed current	:	53,7-48,5/	24,3 A			Degree of	protection	: IP23	
	ed voltage	:	208-230/4	60 V			Altitude	•	: 1000 m.a.s.l	
Freq	luency		60 Hz				Ambient te		: -20 °C to +40) °C
		÷		((()))			Duty cycle		: S2, 60 min	
Pole	but		20 HP (15	k\\/)			Locked rot Temperatu		:15 s (hot) 27 :105 K	e (eela)

20


This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization. Page 194



BALDOR • RELIANCE Product Information Order: 40-0000-0338 - Sales Order #: 1210494336-10 - PRELIMINARY DATA

Notes:	Class null
	Division null

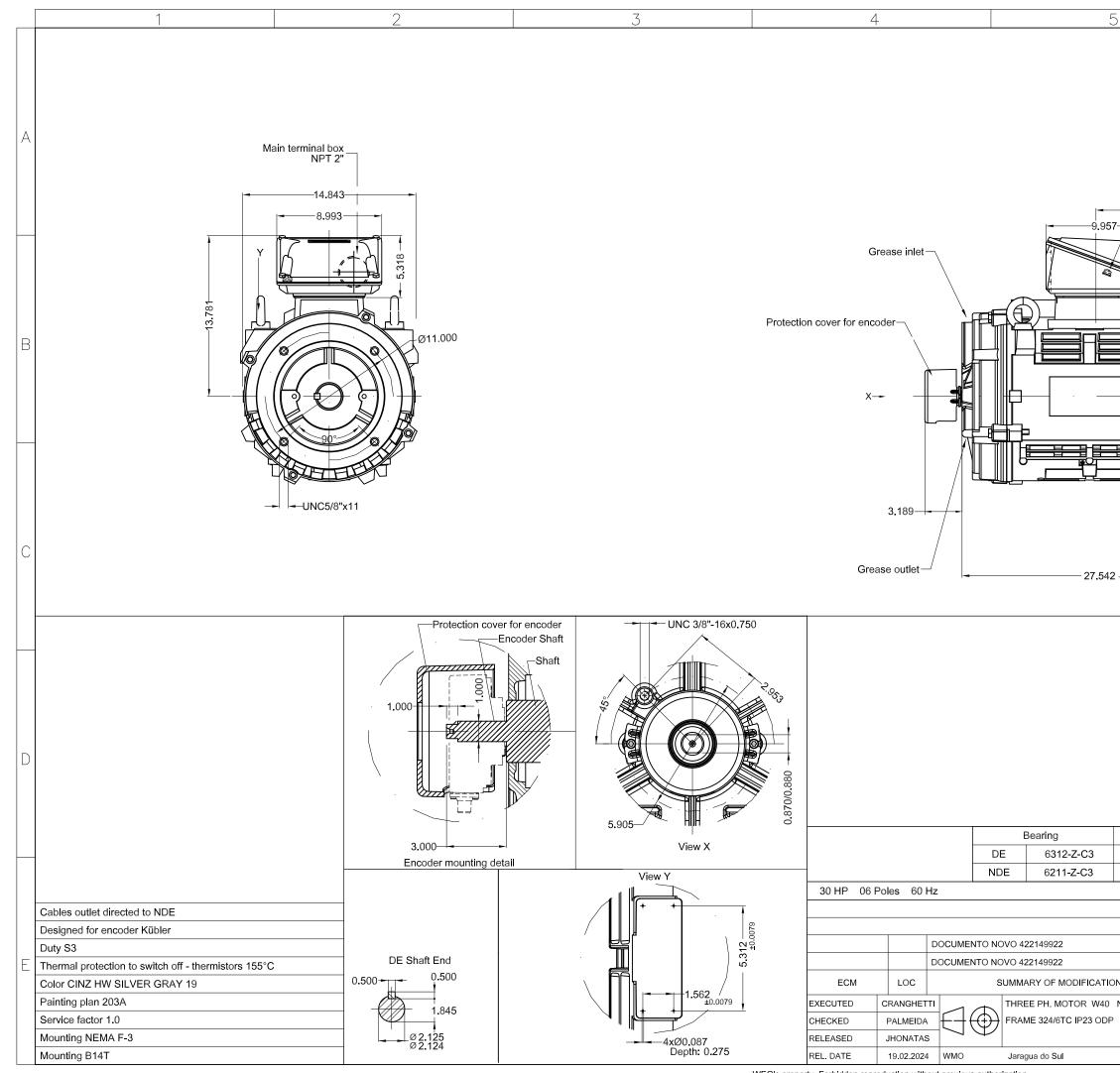
Nameplate NP4389L							
CAT.NO.	CMTR2501						
SPEC.	40-0000-0338	40-0000-0338					
FRAME			H.P. 25				
	208-230/460						
MAG. CUR.	14.6	_		F.L. AMPS	68-64/32		
R.P.M.	1180		R.P.M. I	AX 1800			
HZ.	60	PH.	3				
SER.F.	1.00	D	ES. A	SLHZ	1		
NEMA NOM. EFF.	93	v	/K2 9.31				
BLOWER		v	PI	1	HZ	AMPS	
RATING	40C AMB-CONT						
DE	6312	ODE 63	809				
cc	010A S	N					
	1.15SF ON SINEWAVE 5:1 C	т					

DATA SHEET

Three Phase Induction Motor - Squirrel Cage

:

Customer

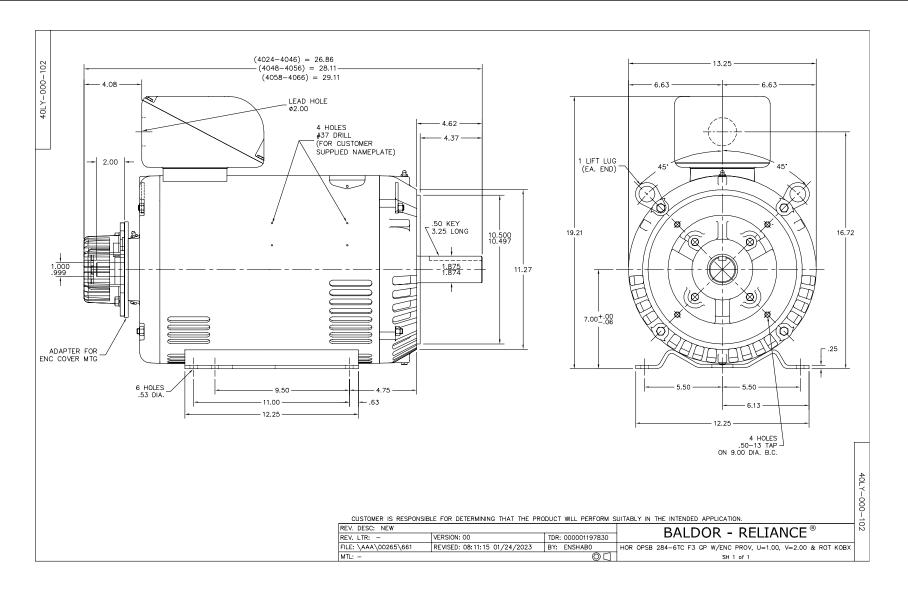

Product line

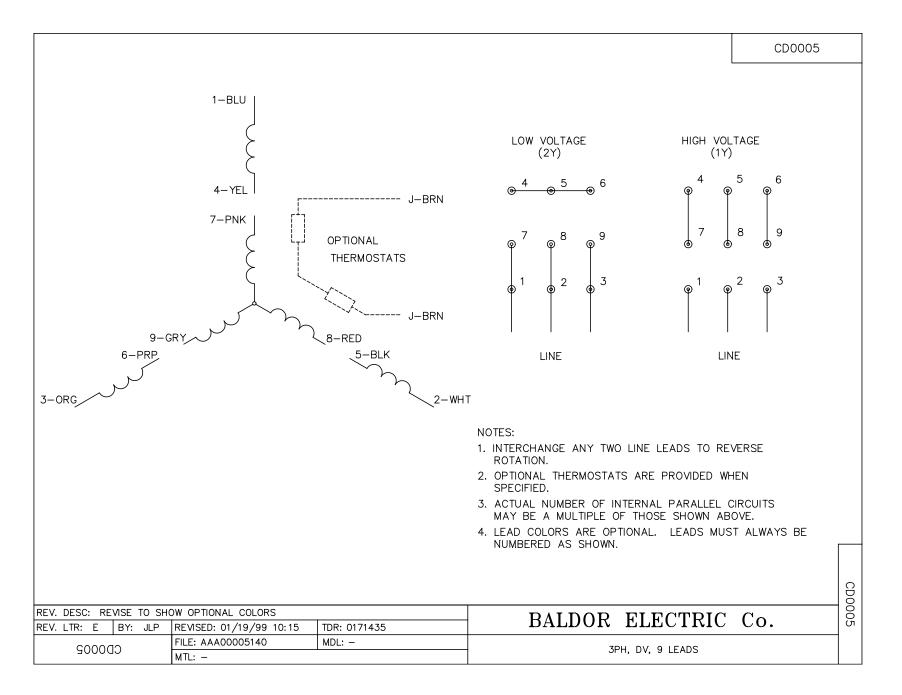
: W40 NEMA Premium Efficiency

Fran			324/6T				Locked rote		: 17 s (hot) 31	s (cold)
Dutp			30 HP (22	kW)			Temperatu	re rise ⁴	:105 K	
Pole		: 6	-				Duty cycle		: S2, 60 min	
	luency		60 Hz				Ambient te	mperature	: -20 °C to +40	°C
	ed voltage		208-230/4				Altitude		: 1000 m.a.s.l	
	ed current		79,6-72,0/				Degree of		: IP23	
	. Amperes		453/227 A				Cooling me	ethod	: IC01 - ODP	
	(p.u.)		6,3 Code				Mounting		: F-3	
	oad current		30,2/15,1	A			Direct of ro		: Both	
	ed speed		1182 rpm				Noise level		: 62,0 dB(A)	
Slip	1.4		1,50 %				Starting me		: VFD	
	ed torque		133 ft.lb				Approx. we	eights	: 545 lb	
	ked rotor torque		200 %				Design		: B	
	up torque		170 %							
	akdown torque lation class	: 2	240 % =							
	iation class		- 1,00							
	nent of inertia (J)		1,00 9,56 sq.ft.	lh						
Outp	. ,	 Start	25%	50%	75%	100%	Load type		: Constant torq	
	iency (%)		88,2	92,4	93,0	93,6	Load torqu	۵	: 132 ft.lb	ue
	er factor	0,47	0,43	0,66	0,77	0,82		a (J=GD²/4)	: 9,5608 sq.ft.ll	h
	ration limits with in		0,40	0,00	0,11	0,02			ase-to-phase <= 20	
-	Iz up to 60 Hz (Co		orque): 13	22 ft lb			dV/dt	beak voltage priz		500 V/µs
201			orque). It	52 H.ID			Rise time		>= 0,	•
									>= 0,	ι μο
_			Drive		Non driv					
	ring type		6312-Z	Z-C3	6211-2	Z-C3				
Lubr	ication interval		6312-Z 2000	Z-C3 0 h	6211-2 2000	Z-C3 0 h				
Lubr Lubr	rication interval		6312-Z 2000 21	Z-C3 0 h g	6211-2 2000 11	Z-C3 0 h g				
Lubr Lubr	ication interval		6312-Z 2000 21	Z-C3 0 h g	6211-2 2000	Z-C3 0 h g				
Lubr Lubr Lubr Note	rication interval ricant amount ricant type		6312-Z 2000 21	Z-C3 0 h g	6211-2 2000 11	Z-C3 0 h g				
Lubr Lubr Lubr Note	rication interval ricant amount ricant type		6312-Z 2000 21	Z-C3 0 h g	6211-2 2000 11	Z-C3 0 h g				
Lubr Lubr Lubr Note Elev	rication interval ricant amount ricant type es: ator Duty Motor	bour: 25	6312-2 2000 21 (MO	Z-C3 0 h g	6211-2 2000 11	Z-C3 0 h g				
Lubr Lubr Lubr Note Elev	rication interval ricant amount ricant type	hour: 25	6312-2 2000 21 (MO	Z-C3 0 h g	6211-2 2000 11	Z-C3 0 h g				
Lubr Lubr Lubr Note Elev	rication interval ricant amount ricant type es: ator Duty Motor	hour: 25	6312-2 2000 21 (MO	Z-C3 0 h g	6211-2 2000 11	Z-C3 0 h g				
Lubr Lubr Lubr Note Elev	rication interval ricant amount ricant type es: ator Duty Motor	hour: 25	6312-2 2000 21 (MO	Z-C3 0 h g	6211-2 2000 11	Z-C3 0 h g				
Lubr Lubr Lubr Note Elev Qua	rication interval ricant amount ricant type es: ator Duty Motor ntity of starts per		6312-2 2000 21 0 MO	Z-C3 0 h g BIL PO	6211-2 2000 11	Z-C3 0 h g				
Lubr Lubr Lubr Note Elev Qua	rication interval ricant amount ricant type es: ator Duty Motor ntity of starts per Specification	: MG	6312-2 2000 21 g MC 7 7	Z-C3 0 h g DBIL PO	6211-2 2000 11	Z-C3 0 h g			IG1 - Part 7	
Lubr Lubr Lubr Note Elev Qua	ication interval icant amount icant type es: ator Duty Motor ntity of starts per Specification Tests	: MG : MG	6312-2 2000 21 (MC 7 7	2-C3 0 h g <u>IBIL PO</u> 0 2	6211-2 2000 11	Z-C3 0 h g			IG1 - Part 7 IG1 - Part 12	
Lubr Lubr Lubr Note Elev Qua	rication interval ricant amount ricant type es: ator Duty Motor ntity of starts per Specification	: MG : MG	6312-2 2000 21 g MC 7 7	2-C3 0 h g <u>IBIL PO</u> 0 2	6211-2 2000 11	Z-C3 0 h g				
Standards Standards Standards	ication interval icant amount icant type es: ator Duty Motor ntity of starts per Specification Tests	: MG : MG : MG	6312-2 2000 21 g MC 7 7 7 1 - Part 1 1 - Part 1 1 - Part 9	2-C3 0 h g <u>BIL PO</u> 0 2	6211-2 2000 11 LYREX EN	Z-C3 0 h g M	Tol	erance : M		n sinusoidal
Lubr Lubr Lubr Note Elev Qua This r	Specification Tests Noise	: MG : MG : MG	6312-2 2000 21 g MC 7 7 7 1 - Part 1 1 - Part 1 1 - Part 9	2-C3 0 h g <u>BIL PO</u> 0 2	6211-2 2000 11 LYREX EN	Z-C3 0 h g M	Tole These are power supp	erance : M average values	IG1 - Part 12	
Lubr Lubr Lubr Note Elev Qua Stangards This r (1) W	Specification Tests Noise	: MG : MG : MG cancels the Irive end.	6312-2 2000 21 (MC 7 7 7 7 7 7 9 7 7 7 7 9 7 7 7 7 7 7 7	2-C3 0 h g <u>IBIL PO</u> 0 2	6211-2 2000 11 LYREX EN	Z-C3 0 h g M	Tole	erance : M average values	IG1 - Part 12 based on tests with	
Lubr Lubr Lubr Note Elev Qua Standards This r (1) W (2) M	ication interval icant amount icant type es: ator Duty Motor ntity of starts per Specification Tests Noise evision replaces and of hen viewed from the d	: MG : MG : MG cancels the lrive end. h tolerance	6312-2 2000 21 g MC 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2-C3 0 h g DBIL PO DBIL PO 2 ne, which n	6211-2 2000 11 LYREX EN	Z-C3 0 h g M	Tole These are power supp	erance : M average values	IG1 - Part 12 based on tests with	
Lubr Lubr Lubr Note Elev Qua This r (1) W (2) M (3) Ar	ication interval icant amount icant type es: ator Duty Motor ntity of starts per Specification Tests Noise revision replaces and of hen viewed from the d easured at 1m and with	: MG : MG : MG cancels the lrive end. h tolerance	6312-2 2000 21 g MC 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2-C3 0 h g DBIL PO DBIL PO 2 ne, which n	6211-2 2000 11 LYREX EN	Z-C3 0 h g M	Tole These are power supp	erance : M average values	IG1 - Part 12 based on tests with	
Lubr Lubr Lubr Note Elev Qua Sprapurator This r (1) W (2) M (3) Ar	ication interval icant amount icant type es: ator Duty Motor ntity of starts per Specification Tests Noise evision replaces and o hen viewed from the d easured at 1m and witt	: MG : MG : MG cancels the lrive end. h tolerance	6312-2 2000 21 g MC 7 7 7 7 7 7 9 previous or 9 of +3dB(A) nges after m	2-C3 0 h g <u>IBIL PO</u> <u>IBIL PO</u> 2 ne, which n anufacturi	6211-2 2000 11 LYREX EN	Z-C3 0 h g M	Tole These are power supp	erance : M average values	IG1 - Part 12 based on tests with	
Lubr Lubr Lubr Note Elev Qua This r (1) W (2) M (3) Ar	ication interval icant amount icant type es: ator Duty Motor ntity of starts per Specification Tests Noise evision replaces and o hen viewed from the d easured at 1m and witt proximate weight subj the rated point.	: MG : MG : MG cancels the lrive end. h tolerance	6312-2 2000 21 g MC 7 7 7 7 7 7 9 previous or 9 of +3dB(A) nges after m	2-C3 0 h g <u>IBIL PO</u> <u>IBIL PO</u> 2 ne, which n anufacturi	6211-2 2000 11 LYREX EN	Z-C3 0 h g M	Tole These are power supp	erance : M average values bly, subject to the	IG1 - Part 12 based on tests with e tolerances stipula	ated in NEMA
Lubr Lubr Lubr Note Elev Qua This r (1) W (2) M (3) Ap (4) At	ication interval icant amount icant type es: ator Duty Motor ntity of starts per Specification Tests Noise revision replaces and of hen viewed from the d easured at 1m and witt oproximate weight subj the rated point. Rev.	: MG : MG : MG cancels the lrive end. h tolerance	6312-2 2000 21 g MC 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2-C3 0 h g <u>IBIL PO</u> <u>IBIL PO</u> 2 ne, which n anufacturi	6211-2 2000 11 LYREX EN	Z-C3 0 h g M	Tole These are power supp	erance : M average values bly, subject to the	IG1 - Part 12 based on tests with e tolerances stipula Checked	ated in NEMA

This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization. Page 199

20

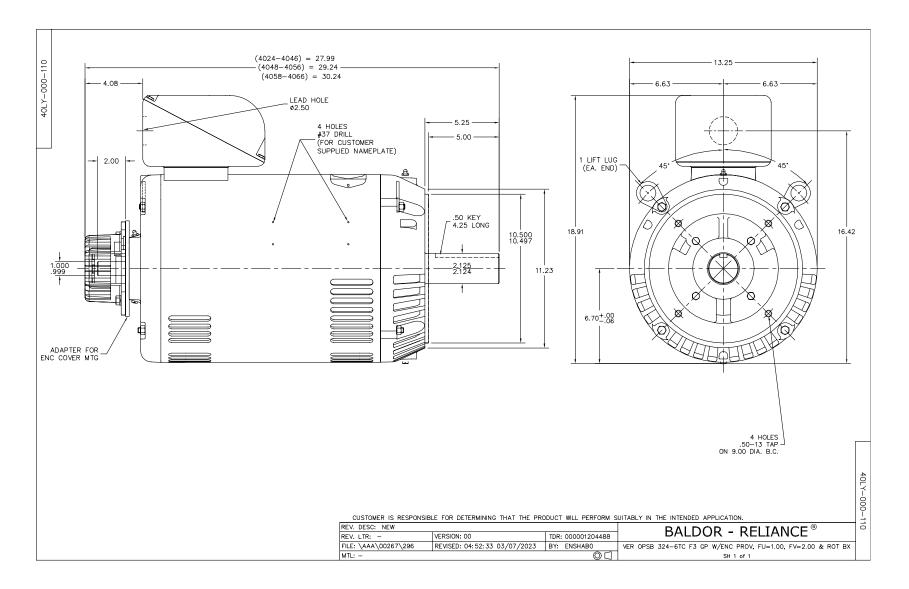

WEG's property. Forbidden reproduction without previous authorization.

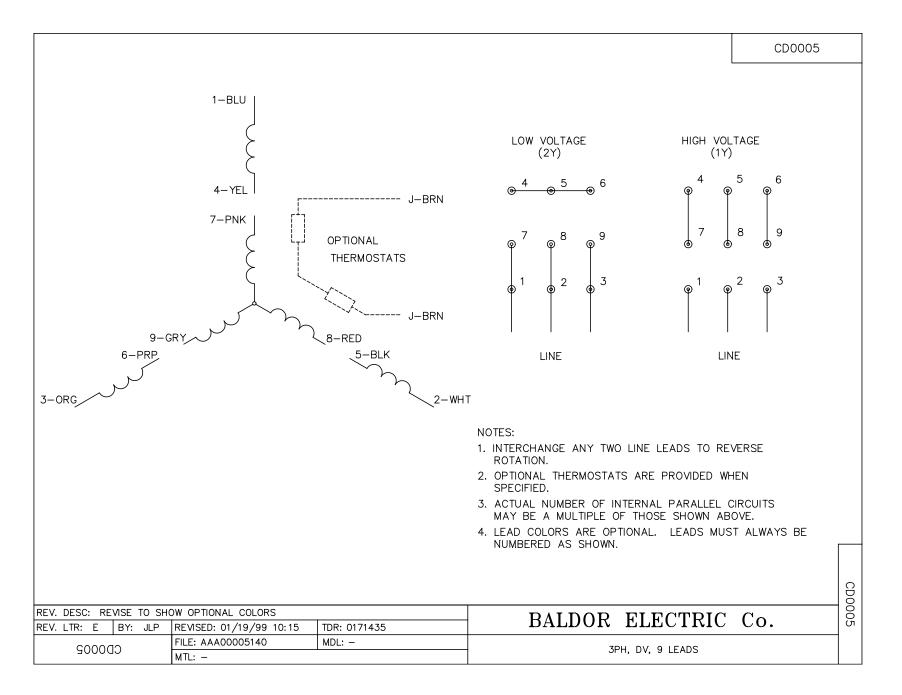

			0.10 0.1-		DE	
	-DATED REVIS	ION. THE PREV		I BE DISREGA	KUED.	
Groundin 11.070 		5-185 mm² / 3/ Grease inlet	0 			
						Dimensions in inches
	oricant					
	DLYREX EM					
MOBIL PC					A	
	I	I		1:8		
	CRANGHETTI				01	
	CRANGHETTI		JHONATAS	19.02.2024	00	
ONS	EXECUTED	CHECKED	RELEASED	DATE	VER	
NEMA PREM. EFF		149587	3771			
		WDD	01	Шеі		A3
Produc	t Engineering	SHEET	1 / 1		_	XME
			I	Page	200	
						_

BALDOR • RELIANCE Product Information Order: 40-0000-0312 - Sales Order #: 1210248314-30 - PRELIMINARY DATA

Notes:	Class null
	Division null

Nameplate NP4389L							
CAT.NO.	CMTR3005						
SPEC.	40-0000-0312						
FRAME	286TC						
VOLTS	230/460 USABLE@208V:76A	230/460 USABLE@208V:76A					
MAG. CUR.	23.8/11.9	1		F.L. AMPS 70/35			
R.P.M.	1770		R.P.M. MAX	2700			
HZ.	60	PH. 3					
SER.F.	1.00	DES. B		SL HZ 1			
NEMA NOM. EFF.	94.1	WK2 4.91					
BLOWER	\	1	PH	HZ	AMPS		
RATING	40C AMB-CONT						
DE	6311	ODE 6309					
CC	010A SN						
	1.15SF ON SINEWAVE 5:1 CT						





BALDOR • RELIANCE Product Information Order: 40-0000-0336 - Sales Order #: 1210504613-10 - PRELIMINARY DATA

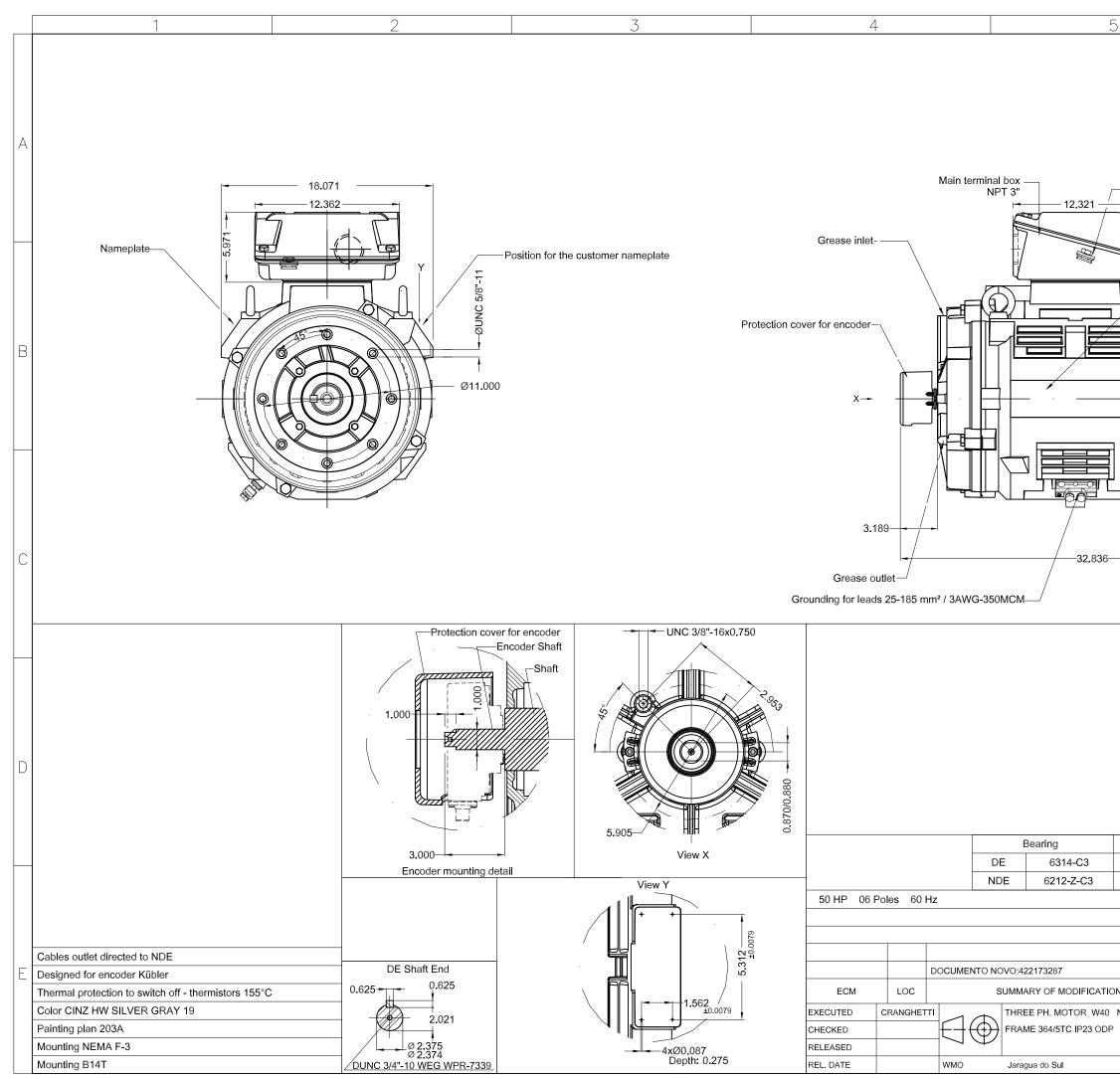
Notes:	Class null
	Division null

Nameplate NP4389L								
CAT.NO.	CMTR4005	ITR4005						
SPEC.	40-0000-0336							
FRAME	324TC		Н.	P. 40				
VOLTS	208-230/460							
MAG. CUR.	21				F.L. AMPS 99	-98/49		
R.P.M.	1770		I	R.P.M. MAX	2700			
HZ.	60	_ Р	н. з	_				
SER.F.	1.00		DES. A		SL HZ 1			
NEMA NOM. EFF.	94.1		WK2 4.91					
BLOWER		v		PH		HZ	AMPS	
RATING	40C AMB-CONT							
DE	6312	ODE	6309					
CC	010A	SN						
	1.15SF ON SINEWAVE 5:1	СТ						

DATA SHEET

Three Phase Induction Motor - Squirrel Cage

:

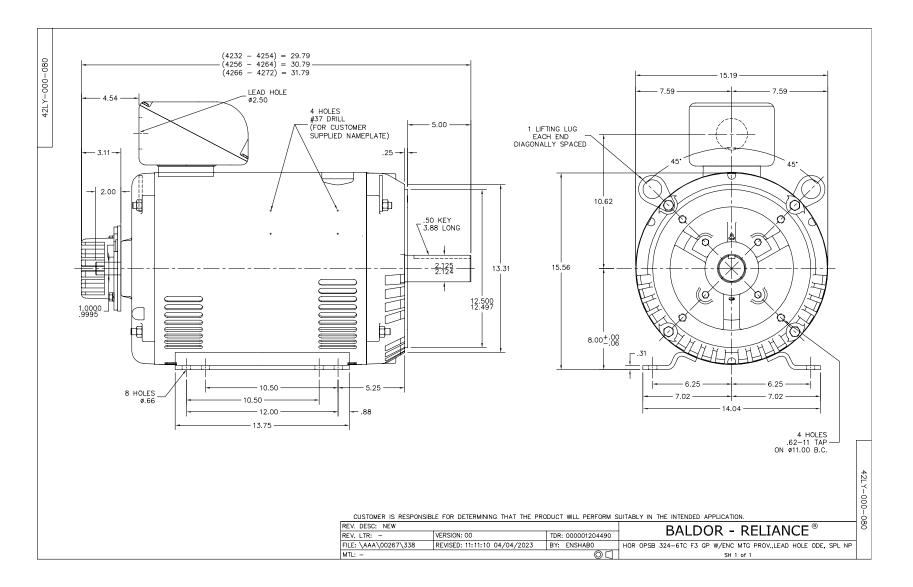

Customer

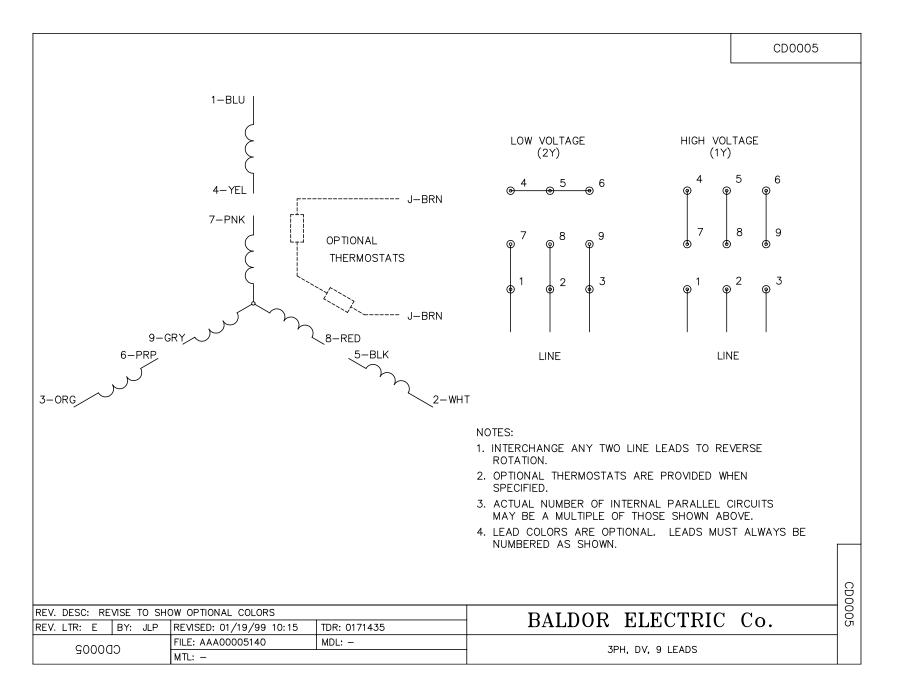
Product line

: W40 NEMA Premium Efficiency

(2) N (3) A (4) A	t the rated point. Rev. formed by	lkist	Sur	nmary c	of changes	3	Perform	ied	Checked FD-024	Date
(2) N (3) A			Sur	nmary c	of changes	6	Perform	led	Checked	Date
(2) N (3) A	it the rated point.									
(2) N		ubject to cha	nyes aner M	anulaciufi	ng process.					
• •	pproximate weight si		()		na process		wi U 1⁻12.			
	Vhen viewed from the leasured at 1m and v						power supply, subject MG 1-12.	to the tol	erances stipul	ated in NEMA
INIS	revision replaces an		e previous or	ie, which i	must be elimi	inated.	These are average va			
						inotod				
itanc	Noise	-	61 - Part 1 61 - Part 9				IUICIAIICE	. 10101	- Γαπ ΙΖ	
Standards	Specification Tests		61 - Part 1 61 - Part 1	-			Vibration Tolerance	-	- Part 7 - Part 12	
	1									
Que			•							
	antity of starts pe		4							
Not	es: vator Duty Motor									
	ricant type		IVIO		LYREX EN	/1				
	ricant amount		27 g MO	-	13 (•				
	rication interval		2000		2000		Maximum compression	n :	: 2062 lb	
	aring type		6314-		6212-2		Maximum traction		: 1242 lb	
D	ring to -		Drive		Non driv		Foundation loads			
									~= 0	, · μο
50 F	12 UP 10 00 FIZ (1		orque). Z	13 ILID			Rise time			500 ν/μs ,1 μs
•	eration limits with Hz up to 60 Hz (6		oraue). 21	19 ft Ih			Maximum peak voltag dV/dt	je pnase-	-	000 V 500 V/μs
-			0,52	0,74	0,82	0,85		,	: 23,97 sq.ft.lb	
	ciency (%) ver factor	- 0,44	90,7 0,52	93,6 0,74	94,1 0,82	94,1 0.85	Load torque Load inertia (J=GD ² /4			, ,
	put ciency (%)	Start	25% 90,7	<u> </u>	<u>75%</u> 94,1	100% 94,1	• •		: Constant tore : 219 ft.lb	que
Out	,) : Start	24,0 sq.π. 25%	D 50%	75%	100%	Load type		· Constant tor	
	vice factor ment of inertia (J		1,00 24,0 sq.ft.	lh						
	vice factor		г 1,00							
	akdown torque	:								
	up torque akdown torque	-	170 % 220 %							
	ked rotor torque		200 % 170 %				Design		. D	
	ed torque		222 ft.lb				Approx. weight ³		: 820 lb : B	
Slip			1,42 %				Starting method		: VFD	
	ed speed		1183 rpm				Noise level ²		: 68,0 dB(A)	
	load current		37,0/18,5	A			Direct of rotation ¹		: Both	
	C (p.u.)		6,7 Code				Mounting		: F-3	
	R. Amperes		778/389 A				Cooling method		: IC01 - ODP	
	ed current		128-116/5				Degree of protection		: IP23	
Rate	ed voltage	:	208-230/4	60 V			Altitude		: 1000 m.a.s.l	
1100	quency	:	60 Hz				Ambient temperature		: -20 °C to +40	O° C
Fro	es	:	6				Duty cycle		: S2, 60 min	
Pole	put	:	50 HP (37	kW)			Temperature rise4		: 105 K	
	me	:	364/5T				Locked rotor time		: 15 s (hot) 27	s (cold)

This document is exclusive property of WEG S/A. Reprinting is not allowed without written authorization. Page 207

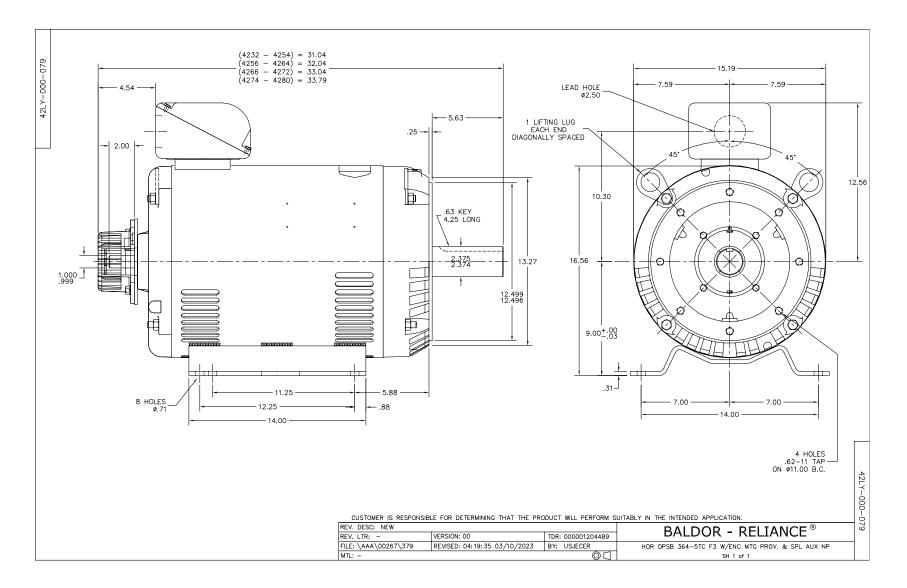

WEG's property. Forbidden reproduction without previous authorization.

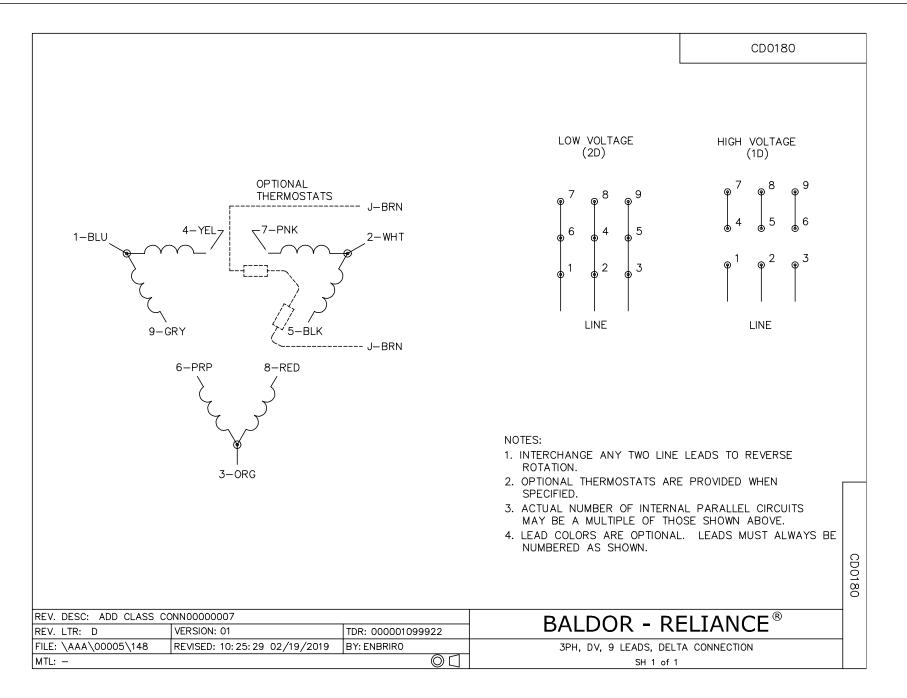

)			6				
—Grounding for	leads 35-70 m	1-2/0 AW	G				
	<i>H</i>	Accessories na	meplate				
	/ Gre	ease inlet					
		0					
		0	†				
╤╢┟╨┷╢		.331	Î				
═┛║┠╂╤┨							
	sí –		-Ø 12.500- -Ø 14.095-				
			8 8				
┓╷╀┲╧╜							
		75					
5.875							
Grease outlet							
					ches		
					l i u st		
					Dimensions in inches		
Lub	oricant				^{ia}		
MOBIL PO	OLYREX EM						
MOBIL PC	DLYREX EM						
					A		
	1			1:8			
	CRANGHETTI				00		
NS	EXECUTED	CHECKED	RELEASED	DATE	VER		
NEMA PREM. EFF		1493684	1460				
		WDD	00	Ше	A3		
Produc	t Engineering	SHEET	1 / 1		W		
	I			Page	208		

BALDOR • RELIANCE Product Information Order: 42-0000-0174 - Sales Order #: 1210504613-20 - PRELIMINARY DATA

Notes:	Class null
	Division null

Nameplate NP4389L								
CAT.NO.	CMTR5005	ITR5005						
SPEC.	42-0000-0174							
FRAME	326TC		н	. P. 50				
VOLTS	208-230/460							
MAG. CUR.	33-40/20				F.L. AMPS 12	22/114/57		
R.P.M.	1775			R.P.M. MAX	2700			
HZ.	60		РН. 3					
SER.F.	1.00		DES. A		SL HZ 0.3	83		
NEMA NOM. EFF.	94.5		WK2 8.53					
BLOWER		v		PH		HZ	AMPS	
RATING	40C AMB-CONT	-						
DE	6312		6311					
CC	010A	SN						
	1.15SF ON SINEWAVE	5:1 CT						





BALDOR • RELIANCE Product Information Order: 42-0000-0173 - Sales Order #: 1210504613-30 - PRELIMINARY DATA

Notes:	Class null
	Division null

Nameplate NP4389L							
CAT.NO.	CMTR6005	MTR6005					
SPEC.	42-0000-0173						
FRAME	364TC		H.P. 60				
VOLTS	208-230/460						
MAG. CUR.	24	-		F.L. AMPS 1	48-136/68		
R.P.M.	1775			AX 2700			
HZ.	60	РН. 3		CLASS F			
SER.F.	1.00	DES	3. A	SL HZ C	0.83		
NEMA NOM. EFF.	95	WK	2 10.4				
BLOWER	N	1	PH		HZ	AMPS	
RATING	40C AMB-CONT						
DE	6313	ODE 6311	1				
cc	010A SN	1					
	1.15SF ON SINEWAVE 5:1 CT						

Certificate of Compliance

Certificate:	80009860	Master Contract:	155941
Project:	80009860	Date Issued:	2019-12-11
Issued To:	Hollister-Whitney Elevator Co., LLC 2603 North 24th St Quincy, Illinois, 62305 United States Attention: Brent Henderson		

Issued by: Kevin Chieu Kevin Chieu

CSA B44.1/ASME A17.5

PRODUCTS

CLASS - C241101 - ELEVATOR EQUIPMENT-Open and Enclosed Elevator Electrical Equipment CLASS - C241181 - ELEVATOR EQUIPMENT - Open and Enclosed Elevator Electrical Equipment -Certified to US Standards Elevator Brake solenoid GT31-314

Ratings: Pick 190Vdc, 2.5A max Hold 80Vdc, 1A max 60% duty cycle, 180 starts/hr

Note: Open type equipment is investigated for use only as a component of electrical equipment where the acceptability of the final assembly is determined by CSA.

APPLICABLE REQUIREMENTS

CSA B44.1/ASME A17.5 - Elevator and Escalator Electrical Equipment

Page 1

Supplement to Certificate of Compliance

Certificate: 80009860

Master Contract: 155941

The products listed, including the latest revision described below, are eligible to be marked in accordance with the referenced Certificate.

Product Certification History

Project	Date	Description
80009860	2019-12-11	Original certification of GT31-314 elevator brake solenoid

Certificate of Compliance

Certificate:	80009860	Master Contract:	155941
Project:	80160014	Date Issued:	11/27/2023
Issued to:	Hollister-Whitney Elevator Co., L 2603 North 24th St Quincy, Illinois 62305 United States	LC	

Attention: Brent Henderson

The products listed below are eligible to bear the CSA Mark shown with adjacent indicators 'C' and 'US' for Canada and US or with adjacent indicator 'US' for US only or without either indicator for Canada only.

Issued by: Tai Pham Tai Pham

CSA B44.1/ASME A17.5

PRODUCTS

C241101 ELEVATOR EQUIPMENT-Open and Enclosed - Elevator Electrical Equipment C241181 ELEVATOR EQUIPMENT - Open and Enclosed Elevator - Electrical Equipment - Certified to US Standards

Elevator Brake solenoid

Models	Current (A max)	Duty Cycle	Voltage (VDC)
GT31-314	Pick: 2.5	60% duty cycle, 180 starts/hr	Pick: 190
	Hold: 1	60% duty cycle, 180 starts/hr	Hold: 80

Models	Current (A max)	Duty Cycle	Voltage (VDC)
GT31-314-110	Pick: 1.9 / 3.4	60% duty cycle, 180 starts/hr	Pick: 190 / 110
QD 507 Rev 2019-04-30	C	2023 CSA Group. All rights reserved.	Page 1

Page 217

Certificate: 80009860

Master Contract: 155941 Date Issued: 11/27/2023

Project: 80160014	
-------------------	--

Hold: 0.8 / 1.9	60% duty cycle, 180 starts/hr	Hold: 80 / 60
-----------------	-------------------------------	---------------

Note: Open type equipment is investigated for use only as a component of electrical equipment where the acceptability of the final assembly is determined by CSA.

Certificate: 80009860

Project: 80160014

APPLICABLE REQUIREMENTS

CSA B44.1:19/ASME A17.5-2019 - Elevator and escalator electrical equipment

QD 507 Rev 2019-04-30

Master Contract: 155941

Date Issued: 11/27/2023

Certificate: 80009860

Project: 80160014

Master Contract: 155941 Date Issued: 11/27/2023

Notes:

Products certified under Class C241101, C241181 have been certified under CSA's ISO/IEC 17065 accreditation with the Standards Council of Canada (SCC). <u>www.scc.ca</u>

Supplement to Certificate of Compliance

Certificate: 80009860

Master Contract: 155941

The products listed, including the latest revision described below, are eligible to be marked in accordance with the referenced Certificate.

Product Certification History

Project	Date	Description
80160014	November 27, 2023	Update report 80009860 to add new winding configuration and model GT31-314-110
80009860	December 11, 2019	Original certification of GT31-314 elevator brake solenoid